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Abstract

The multiple point principle, according to which several vacuum
states with the same energy density exist, is put forward as a fine-
tuning mechanism predicting the exponentially huge ratio between
the fundamental and weak scales in the Standard Model (SM). Using
renormalisation group equations for the SM, we obtain the effective
potential in the 2-loop approximation and investigate the existence of
its postulated second minimum at the fundamental scale. A prediction
is made of the existence of a new bound state of 6 top quarks and 6
anti-top quarks, formed due to Higgs boson exchanges between pairs
of quarks/anti-quarks. This bound state is supposed to condense in a
new phase of the SM vacuum. The existence of three vacuum states
(new, weak and fundamental) solves the hierarchy problem in the SM.
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1. Cosmological Constant and Multiple Point

Principle

In the present talk we suggest a scenario, using only the pure SM, in which an
exponentially huge ratio between the fundamental (Planck) and electroweak
scales results:

µfund

µew
∼ e40.

In such a scenario it is reasonable to assume the existence of a simple and
elegant postulate which helps us to explain the SM parameters: couplings,
masses and mixing angles. In our model such a postulate is based on a
phenomenologically required result in cosmology: the cosmological constant
is zero, or approximately zero, meaning that the vacuum energy density
is very small. A priori it is quite possible for a quantum field theory to
have several minima of its effective potential as a function of its scalar fields.
Postulating zero cosmological constant, we are confronted with a question: is
the energy density, or cosmological constant, equal to zero (or approximately
zero) for all possible vacua or it is zero only for that vacuum in which we
live?

This assumption would not be more complicated if we postulate that all
the vacua which might exist in Nature, as minima of the effective poten-
tial, should have approximately zero cosmological constant. This postulate
corresponds to what we call the Multiple Point Principle (MPP) [1].

The MPP postulates: there are many vacua with the same energy density
or cosmological constant, and all cosmological constants are zero, or approx-
imately zero.

In the present talk we want to use this principle to solve the hierarchy
problem in the SM.

2. The renormalisation group equation for

the effective potential

The renormalisation group (RG) improvement of the effective potential,
which is a function of the scalar field φ obeys the Callan-Symanzik equa-
tion (see Refs.[2]):

(M
∂

∂M
+ βm2

∂

∂m2
+ βλ

∂

∂λ
+ βg

∂

∂g
+ γ φ

∂

∂φ
)Veff(φ) = 0. (1)

Here M is a renormalisation mass parameter, βm2 , βλ, βg are the RG functions
for mass, scalar field self-interaction and gauge couplings, respectively; γ is
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the anomalous dimension, gi are gauge coupling constants: gi = (g′, g, g3) for
U(1)Y (hypercharge), SU(2) and SU(3) groups of the SM.

From now on h
def
= gt is the top-quark Yukawa coupling constant. And we

neglect all Yukawa couplings of light fermions.
In the loop expansion of the Veff :

Veff = V (0) +
∑

n=1

V (n), (2)

we have V (0) as a tree-level potential of the SM.
The breaking SU(2)L × U(1)Y → U(1)em is achieved in the SM by the

Higgs mechanism, giving masses to the gauge bosons W±, Z, the Higgs boson
and the fermions.

With one Higgs doublet of SU(2)L, we have the following tree–level Higgs
potential:

V (0) = −m2Φ+Φ +
λ

2
(Φ+Φ)2. (3)

The vacuum expectation value of the Higgs field Φ is:

< Φ >=
1√
2

(

0
v

)

, (4)

where

v =

√

2m2

λ
≈ 246 GeV. (5)

Introducing a four-component real field φ:

Φ+Φ =
1

2
φ2, (6)

we have the following tree-level potential:

V (0) = −
1

2
m2φ2 +

1

8
λφ4. (7)

The masses of the gauge bosons W and Z, a fermion with flavor f and the
physical Higgs boson H are expressed in terms of the VEV parameter v:

M2
W =

1

4
g2v2, M2

Z =
1

4
(g2 + g′2)v2,

mf =
1√
2
hfv, M2

H = λv2, (8)

where hf are the Yukawa couplings with the flavor f .
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3. The second minimum of the effective po-

tential in the 2-loop approximation

In our paper [3] we have calculated the 2–loop effective potential in the limit:

φ2 >> v2, φ2 >> m2, (9)

using the SM renormalisation group equations in the 2-loop approximation
given by Ref.[4]. We have obtained:

Veff(2 − loop) = (
λ

8
+ At + Bt2)φ4, (10)

where t = log(µ/M) = log(φ/M) is the evolution variable,

A =
1

8
(β

(1)
λ + β

(2)
λ ) +

λ

2
(γ(1) + γ(2) + (γ(1))2) +

1

8
γ(1)β

(1)
λ , (11)

and

B =
1

4
γ(1)(β

(1)
λ + 4λ γ(1)) +

3

32π2
λ β

(1)
λ +

3

256π2
β

(1)
g′ (g′3 + g′g2)

+
3

256π2
β(1)

g (3g3 + g′2g) −
3

16π2
β

(1)
h h3. (12)

Assuming the existence of the two minima of the effective potential in the
simple SM, we have taken the cosmological constants for both vacua equal
to zero, in accord with the MPP.

Then we have the following illustrative qualitative picture:
Here the first minimum:

φmin1 = v = 246GeV (13)

is the standard ”Electroweak scale minimum”, in which we live, and the
second one is the non-standard ”Fundamental scale minimum”, if it exists.

4. The Multiple Point Principle require-

ments

The MPP requirements for the two degenerate minima in the SM are given
by the following equations:

Veff(φmin1) = Veff (φmin2) = 0, (14)
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Figure 1:

V ′

eff(φmin1) = V ′

eff (φmin2) = 0, (15)

V ′′

eff(φmin1) > 0, V ′′

eff(φmin2) > 0, (16)

where

V ′(φ) =
∂V

∂φ2
, V ′′(φ) =

∂2V

∂(φ2)2
. (17)

As was shown in Ref.[5], the degeneracy conditions of MPP give the following
requirements for the existence of the second minimum in the limit φ2 >> m2 :

λrun(φmin2) = 0, (18)

and
λ′

run(φmin2) = 0, (19)

what means:
βλ(φmin2, λ = 0) = 0. (20)

Using these requirements and the renormalisation group flow the authors
of Ref.[5] computed quite precisely the top quark (pole) and Higgs boson
masses:

Mt = 173 ± 4 GeV and MH = 135 ± 9 GeV. (21)

Let us consider now the searching for the fundamental scale given by these
requirements.
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5. The top-quark Yukawa coupling evolution

and the second minimum of the effective

potential

The position of the second minimum of the SM effective potential essentially
depends on the running of gauge couplings and on the top-quark Yukawa
coupling evolution.

Starting from the experimental results [6], we have:

Mt = 174.3 ± 5.1 GeV, (22)

MZ = 91.1872 ± 0.0021 GeV, (23)

and for QCD αs we have:

α3(MZ) ≡ αs(MZ) = 0.117 ± 0.002. (24)

For the running top quark Yukawa coupling constant considered at the pole
mass of t-quark Mt the experiment gives:

h(Mt) ≈ 0.95 ± 0.03. (25)

Establishing the running of gauge couplings g′, g, g3, exactly αY (t), α2(t)
and α3(t) , in accord with the present experimental data [6], and using all
experimental results with their uncertainties we have constructed the evolu-
tions of the inverse top-quark Yukawa constant: y(t) = α−1

h (t) = 4πh−2(t)
for different experimental uncertainties (see Fig.2).

Three bunches 1(middle), 2(up), 3(down) of curves correspond respec-
tively to the three values of h(Mt) = 0.95, 0.92, 0.98 given by experi-
ment. The spread of each bunch corresponds to the experimental val-
ues of α3(MZ) = 0.117 ± 0.002. (upper and lower curves correspond to
α3(MZ) = 0.115 and α3(MZ) = 0.119 respectively).

The curve y1 for y = α−1
h (t) was calculated from the requirement (20):

βλ(φmin2, λ = 0) = 0. The intersection of the curve y1 with the evolu-
tion of α−1

h (t) for the experimentally established central values: αs(MZ) =
0.117 and h(Mt) = 0.95 gives us the position of the second minimum of
the SM effective potential at

φmin2 ≈ 1019 GeV. (26)

In general, the experimental uncertainties lead to the following second mini-
mum position interval:

φmin2 ≈ 1016 − 1022 GeV. (27)
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Figure 2:

Just this position of the second minimum with given uncertainties predicts
the Froggatt-Nielsen’s result [5]: MH = 135 ± 9 GeV .

The shape of the second minimum at µ = 1019 GeV is described by the
curve of Fig.3 where we have used the following designation:

V
def
=

(16π)4

24
(φ−4

min2)Veff , (28)

In this scenario the new physics begins at the scale ∼ 1019 GeV.

6. A new bound state 6t + 6t̄, three phases in

the SM and the hierarchy problem

The MPP is helpful in solving the fine-tuning problems, in particular, the
problem of the electroweak scale being so tiny compared to the Planck scale.

As is well-known, the quadratic divergencies occur order by order in the
square of the SM Higgs mass, requiring the bare Higgs mass squared to be
fine-tuned again and again as the calculation proceeds order by order. If the
cut-off reflects new physics entering near the Planck scale ΛP lanck, then these
quadratic divergencies become about 1034 times bigger than the final mass
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Figure 3:

squared of the Higgs particle:

(
ΛP lanck

Λelectroweak

)2 ∼ (1017)2 = 1034.

It is clear that an explanation for such a fine-tuning is quite needed.
Supersymmetry solves the technical hierarchy problem, removing the di-

vergencies by having a cancellation between fermion and boson contributions.
But the problem of origin of the huge scale ratio still remains. For example,
it exists in the form why the soft supersymmetry breaking terms are small
compared to the fundamental scale ΛP lanck.

At first sight, it looks difficult to get an explanation of the cancellation of
the quadratic divergencies by fine-tuning, based on the MPP, which predicts
the existence of vacua with degenerate energy densities. The difficulty is that,
from dimensional arguments, the energy density, or cosmological constant,
tends to become dominated by the very highest frequencies and wave numbers
relevant the Planck scale in our case. In fact, the energy density has the
dimension of energy to the fourth powers, so the modes with Planck scale
frequencies contribute typically (1017)4 = 1068 times more than those at the
electroweak scale.

Therefore, the only hope of having any sensitivity to electroweak scale
physics is the existence of two degenerate phases in the SM, which are iden-
tical with respect to the modes higher than electroweak scale frequencies, but
deviate by their physics at the electroweak scale. So, in order to solve the

8



large scale ratio problem using our MPP we need to have a model with two
different phases that only deviate by the physics at the electroweak scale.

What could that now be?
It is obvious that it is necessary to seek a condensation of any strongly

bound states with a binding so strong, in fact, as to make this bound state
tachyonic and to condense it into the vacuum.

As was shown in papers [7-9], such a bound state can be 6t + 6t̄. Here
Higgs scalar particle exchange has an important special feature. Unlike the
exchange of gauge particles, which lead to alternative signs of the interaction,
many top-anti-top constituents put together lead to attraction in all cases
due to the Higgs scalar boson exchange. This attraction of t and anti-t quarks
by the Higgs exchange is independent of colour.

The bound state of a top quark and an anti-top quark (toponium) is
mainly bound by gluon exchange which is comparable with the Higgs ex-
change. But if we now add more top or anti-top quarks, then the Higgs
exchange continues to attract while the gluon exchange saturates and gets
less significant. The maximal binding energy comes from S-wave 6t + 6t̄
ground state. The reason is that the t-quark has 2 spin states and 3 colour
states. This means that by Pauli principle only 6 t-quarks can be put in an
S-wave function, together with 6 anti-t-quarks. So, in total, we have 6 + 6
= 12 t-constituents together in relative S-waves.

If we try to put more t and t̄ quarks together, then some of them will go
into a P-wave and the pair binding energy (Ebinding) will decrease by at least
a factor of 4.

Calculating the pair binding energy using the Bohr formula for atomic
energy levels (here t and 11t-nucleus), C.D.Froggatt and H.B.Nielsen [7,8]
have obtained the following expression for the mass squared of the new bound
state 6t + 6t̄:

m2
bound ≈ (12mt)

2(1 −
33

8π2
h4 + ...), (29)

which gives the critical value of h at m2
bound = 0: hcrit ≈ 1.24. Taking into

account a possible correction due to the Higgs field quantum fluctuations [9],
we obtained the following result:

hcrit ≈ 1.06 ± 0.18, (30)

what is comparable with the experimental value of the top Yukawa coupling
constant at the electroweak scale: hexper(Mt) ≡ gt,exper(Mt) ≈ 0.95 ± 0.03.
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7. The fundamental-electroweak scale hierar-

chy in the SM

The requirement of the degeneracy of the three vacua (new, electroweak and
fundamental) solves the hierarchy problem in the SM.

The central experimental values h(Mt) = 0.95 and α3(MZ) = 0.117,
together with the vacuum degeneracy conditions (18,20), predict a second
minimum at φmin2 ≈ 1019 GeV.

The existence of the second vacuum at φmin2 ≈ 1019 GeV gives a huge
ratio between the fundamental and electroweak scales:

µ(fund)

µ(ew)

∼ 1017,

what leads to the prediction of an exponentially huge scale ratio:

µ(fund)

µ(ew)

∼ e40,

in the absence of new physics between the electroweak and fundamental scales
(with the exception of neutrinos).
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