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Abstract

Theoretical concept of mirror matter is discussed. Mirror matter
is considered as interacting with ordinary matter only gravitationally.
Oscillation of mirror and active neutrinos is studied at low and high
energies. In solar-neutrino physics it results in subdominant effects,
which can be observed in future low-energy experiments. Much at-
tention is given to UHE neutrinos. Oscillation of mirror neutrinos
to active neutrinos can provide very large neutrino fluxes, above the
cascade limit. Some new results are included.

1 Introduction

If not by Borges (1941),1 mirror particles were first suggested by Lee and
Yang [1] in 1956 to save the conservation of parity in the whole enlarged
particle space. This concept was discussed in the different form by Landau
[2] and Salam [3], but in fact it has been clearly formulated only later, in
1966, by Kobzarev, Okun and Pomeranchuk [4], who consistently introduced
mirror symmetry, mirror particles and mirror matter. They introduced the

1“The visible universe is an illusion. Mirrors ... are hateful because they multiply it”.
Jorge Luis Borges, The Garden of Forking Paths (1941).
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mirror particle space as a hidden sector, which interacts with visible one
only gravitationally (Okun [5] considered also communication due to new
very weak forces). It was indicated there that mirror matter can exist in the
form of stars and planets. Later the idea of two weakly interacting sectors,
visible and hidden, found interesting development [6] and astrophysical and
cosmological applications [7]. It has been boosted in 1980s by superstring
theories with E8×E ′

8 symmetry. The particle content and symmetry of inter-
actions in each of the E8 groups are identical, and thus the mirror world has
naturally emerged. The most recent reincarnation of hidden-sector models
is in the context of D-branes. In this approach, light particles are associated
with the endpoints of open strings which are attached to D-branes. Ordinary
and hidden-sector particles live on different branes which are embedded in a
higher-dimensional compactified space.

In 1985 mirror neutrinos were suggested as sterile neutrinos in two pi-
oneering works by Berezhiani and Mohapatra [8] and by Foot and Volkas
[9]. In these works two basic versions of mirror matter scenarios have been
developed.

In the symmetric version [9], like in early works, the Lagrangian which
describes the particles and their interactions in the visible and mirror sectors,
Lvis and Lmirr, are perfectly symmetric and transforms into each other when
~x → −~x, accompanying by all left states transforming into right and vice
versa: ψL → ψ′

R and ψR → ψ′
L, where primes denote the mirror states.

The vacuum expectation values (vev’s) of the Higgs fields are also identical
in both sectors. Parity is conserved in the enlarged space of ordinary and
mirror states. The two sectors (ordinary and mirror) communicate through
the Higgs potential and mixing of neutrinos. Neutrino masses and mixings
in each sector are induced by the usual see-saw mechanism, and mixing of
neutrinos of different sectors are postulated as e.g. m′ν̄Lν

′
R, where mirrors

neutrinos are denoted by primes. As demonstrated in [9] the most general
mixing terms compatible with parity conservation results in maximal mixing
of ordinary and sterile neutrinos.

In the asymmetric version [8] it was suggested that mirror symmetry is
spontaneously broken. While all coupling constants in the two sectors are
identical, the vev’s are different and break the parity. The ratio ζ = v ′/v of
electroweak vev’s (〈φ〉 = v and 〈φ′〉 = v′) gives the scaling factor for ratios of
masses in the ordinary and mirror worlds, such as masses of gauge bosons,
leptons and quarks. The basic communication between the two sectors is
gravitational. It is taken in the form of universal dimension 5 operators,
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suppressed by the Planckian mass MPl. Operating inside each sector and
between them, these terms give neutrino masses and mixings. However, to
describe the desired neutrino masses, the authors assume also additional
communication through the singlet superheavy fields, which results in the
similar dimension 5 operators suppressed by superheavy mass Λ < MPl.

A similar model–with asymmetric mirror sector–was studied in Ref.[10].
The mirror symmetry is broken spontaneously. The potential with two de-
generate minima is the same in both sectors, but mirror and ordinary scalars
choose the different minima at φ′ = v′ and φ = v, respectively. The com-
munication of the two sectors is described by a dimension 5 operator with
superheavy mass Λ in the denominator. The neutrinos in this model are
found to be maximally mixed and mass degenerate. The neutrino masses
and mixings are obtained with help of dimension 5 operators with one scale
Λ, with two different electroweak vev’s, v and v ′, in the visible and mir-
ror sectors, respectively, and using vev’s of two SU(2) singlets 〈φ〉 = v and
〈φ′〉 = v′.

Mirror neutrinos and various applications of mirror matter have been
intensively studied during the past several years in the context of explanation
of atmospheric and solar neutrino problems [8, 9, 11], cosmological problems,
including inflation and nucleosynthesis [12, 13, 14, 11, 10], dark matter and
galaxy formation [12, 13, 15, 16], extra dimensions [17] and high energy
neutrinos [10].

Three subjects of mirror neutrinos will be reviewed here:
subdominant effects in solar neutrino experiments [18], mirror neutrinos from
SN [18] and high energy mirror neutrinos [10, 18].

2 Theoretical concept of mirror matter

Why Lee, Yang, Landau and Salam thought that observed parity violation
implies the mirror matter? It can be explained in the following way.

Particle space is a representation of the Poincare group. This basic the-
oretical assumption demands that inversion operator in particle space, Is,
which describes the space reflection ~x→ −~x, commutes with Hamiltonian

[H, Ir] = 0 (1)

Indeed, reflection ~x→ −~x and time shift t→ t+ ∆t commute as coordinate
transformations. Then the corresponding operators in the particle space, Ir
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and H, must commute, too.
Eq. (1) implies that eigenvalues of operators Ir must be conserved. What

is this operator?
The first candidate is parity operator P .
It is defined by the transformation of spinors ψ(x) and scalars φ(x) as

[19]
Pψ(x0, ~x) = γ0ψ(x0,−~x)
Pφ(x0, ~x) = ±φ(x0,−~x) (2)

It is easy to see that operator P with these properties transforms left states
into right ones and vice versa as it should be for inversion operator. However,
according to Eq.(1) this operator must be conserved, while experiments show
that it is not.
Lee and Yang suggested that Ir = P · R, where R transfers particle to the
new state (mirror particle).
In fact, the assumption of Landau is similar: one may say that he assumed
R = C, i.e. the mirror space is a space of antiparticles, and then the con-
served operator is Ir = CP . Discovery of CP violation dismissed this hy-
pothesis.

Mirror particle space is generated by R-transformation with the same
particle content and interactions (symmetries):

ψL → ψ′
R, ψR → ψ′

L

SU2(L) × U(1) → SU ′
2(R) × U ′(1)

with a new (mirror) photon, γ ′, new (mirror) gauge bosons ant with equal
vev’s and coupling constants:

αi = α′
i, (i = 1, 2, 3), vev = vev′

Kobzarev, Okun and Pomeranchuk suggested that ordinary and mirror sec-
tors communicate only gravitationally.

For leptons communication term can be written as

Lcomm =
1

MPl

(

ψ̄Lφ
)

(ψ′
Rφ

′) , (3)

where ψ and φ are SU(2) doublets: ψ̄L = (l̄L, ν̄L) and φ = (φ∗
0, −φ∗

+). After
EW spontaneous symmetry breaking, Eq. (3) results in mixing of of ordinary
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and mirror (sterile) neutrinos:

v2
EW

MPl

ν̄Lν
′
R = µν̄Lν

′
R, (4)

with µ = v2
EW/MPl = 2.5 × 10−6 eV, where vEW = 174 GeV is vev of the

standard EW group.
Eq.(4) implies oscillation between ν and ν ′. As illustrative example one can
consider the case of two neutrinos ν and ν ′. The 2 × 2 mass matrix in this
case is given by

M =

(

Mi µ
µ Mi

)

. (5)

When the interaction between the two sectors is switched off, µ = 0, neutrinos
are mass degenerate with masses Mi. With µ taken into account, the mixing
is maximal sin 2θ = 1 and the mass eigenvalues split to m1,2 = Mi±µ, so that
∆m2 = 4Miµ (more precisely, in case of three neutrinos ∆m2 = 4Re(Mim

∗),
since neutrino oscillations depend on the product of neutrino mass matrix and
its hermitian conjugate). The transition between the splitted levels results
in να → νs oscillation with small ∆m2.

This feature survives in the three neutrino case which will be considered
in the next Section.

In the early works (e.g. [8, 9]) the authors have studied νν ′ oscillations
in the specific models trying to find explanation for solar and atmospheric
neutrino experiments. In our work [18] we accepted neutrino mixing (4) as
it is given by gravitational communication of mirror and visible sectors, in
attempt to find subdominant, though observable effects. Such effects, even
weak, can result in discovery of mirror neutrinos.

3 Mirror neutrinos in solar-neutrino observa-

tions

Following the work [18] we shall consider here distortion of solar-neutrino
spectrum due to oscillation of visible to mirror neutrinos, in case of Majorana
neutrinos.

Generalizing Eq. (4) to the case of three neutrinos one can write mixing
term as

Lmix = λαβ

v2

MPl

ναν
′
β, (6)
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where v= 174 GeV is EW vev, which is due to mirror symmetry is the same
for SU(2) and SU(2)′ groups. Here and everywhere below we use the Greek
letters α, β = e, µ, τ for flavor states, and Latin letters i, k = 1, 2, 3 for
mass states.

Coefficients λαβ can be either λαβ = 1 (flavor-blind interaction) or λαβ ∼
O(1) (broken flavor blindness). There are some arguments in favor of the
latter case, but our ignorance in theory of quantum gravity does not allow
to make a choice.

The neutrino mass matrix in the flavor representation can be written as

Lν mass = −1

2
(ν, ν ′)

(

M m
mt M ′

)(

ν
ν ′

)

+ h.c., (7)

where ν and ν ′ are three-neutrino states, and M , m are 3 × 3 matrices,
with M = M ′. The models of sterile neutrinos must explain the (almost)
exact equality of active and sterile neutrino masses. In the mirror model this
equality follows from mirror symmetry, as M = M ′. When m = 0 M =
M ′ = diag(M1, M2, M3) are assumed to be generated by usual see-saw
mechanism. Diagonalization in case m 6= 0 results in 6 mass eigenstates ν+

i

and ν−i :

ν±i =
1√
2
(ν ′i ± νi) (8)

The analysis is convenient to perform in terms of matrix

m̄ = U tmU, (9)

where matrix U diagonalizes M = M ′.
The non-diagonal terms of m̄ provide the short-wave oscillations con-

nected with large mass splittings Mi −Mj. These oscillations are strongly
suppressed and in practice are negligible.

The diagonal terms of m̄ remove degeneracy of Mi values (Mi = M ′
i) and

the masses of mass eigenstates (8) becomes

M±i = Mi ± m̄ii (10)

The corresponding mass splitting between M+i and M−i is characterized by

∆m2
i = 4Mim̄ii (11)
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The probability of transition can be calculated as

Plong(να → mirror) =
∑

i

|Uαi|2 sin2

(

∆m2
iL

4E

)

, (12)

where Uαi connects flavor and mass eigenstates να = Uαiνi.
The scheme of mass splitting is shown in Fig. 1. The degenerate levels

Mi = M ′
i in absence of interaction, m = 0, are shown by thick lines. The

unsuppressed oscillations described by Eq. (12) occurs only inside the narrow
windows. To proceed with calculation of observable quantities in our model,

Figure 1: Degeneracy between ordinary and mirror neutrino mass eigenstates
(νi and ν ′i, respectively, with i = 1, 2, 3) is lifted due to communication
interaction. The new mass eigenstates, denoted as ν+

i and ν−i , are maximal
superpositions of νi and ν ′i: ν+

i = (νi + ν ′i)/
√

2 and ν−i = (ν ′i − νi)/
√

2.
Long-wavelength oscillations occur only between splitted states in windows.

we must fix the matrix m in the flavor representation, i.e. the values λαβ

from Eq.(6). Several possibilities are considered in Ref. [18], including the
case of exact flavor blindness λαβ = 1. We shall describe here another specific
case. Our method consists in choosing m̄ and then finding matrix m in
flavor representation. We qualify a choice as acceptable, if it corresponds to
λαβ ∼ O(1). Let us consider the case when m̄ = µ diag(1, 0, 0), i.e. when
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oscillations occur only in the first (lowest) window in Fig. 1. The splitting
∆m2

1 = 4M1m̄ii can be taken arbitrarily small because the smallest neutrino
mass in unpertubative case M1 is not determined experimentally.

We shall demonstrate, that this specific case arises from a class of initial
textures of matrix m with all elements of order one, as implied by Lagrangian
(6) with λαβ ∼ 1. We perform rotation of m̄ to m using the usual mixing
matrix U with Ue3 = sin φ = 0, with the maximal atmospheric neutrino
mixing angle, i.e. ψ = 45◦, and with a large solar angle ω, namely

U =









cω sω 0
− sω√

2

cω√
2

1√
2

sω√
2

− cω√
2

1√
2









, (13)

where sω = sinω and cω = cosω and the common notation for the angles
is ω = θ12, φ = θ13, ψ = θ23. Using Eq. (9), we obtain the communication
matrix m which has all elements O(1), as should be provided by λαβ ∼ 1:

m =









c2ω − 1√
8
s2ω

1√
8
s2ω

− 1√
8
s2ω

1
2
s2

ω −1
2
s2

ω
1√
8
s2ω −1

2
s2

ω
1
2
s2

ω









, (14)

This property remains true generically, even for other values of the starting
matrix, e.g. m̄ = µ diag(1, i, 3) (i here is

√
−1), and actually, this happens

even when m̄ is non-diagonal. In other words, we may have very small or
negligible oscillations in the second window, without violating the condition
that the elements of m are of order unity.

The electron neutrino survival probability can be calculated with the
MSW effect taken into account. In low-energy regime it is given by [18]

Pee = PLMA
ee − cos4 ω sin2 δ. (15)

where PLMA
ee is the standard survival probability at low energies of the LMA

solution.
At high energy regime it is given by

Pee = sin2 ω. (16)

which is the standard survival probability at high energies of the LMA solu-
tion.
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Therefore, the crucial feature of our model is that its predictions coincide
with the standard MSW solution at high energies but are affected by the
subdominant sterile oscillations at low energies: The standard MSW solution
is modified at low energies, and most noticeably at pp neutrinos energies.
One can see it from Fig. 2. Survival probabilities, Pee (and hence neutrino
spectrum) are presented there for different values of ∆m2

1, which are arbitrary
in our model since M1 is a free parameter. One can observe the suppression
of spectrum at low energies when ∆m2

1 varies from 0 to 10 × 10−13 eV2.

0.00

0.25

0.50

0.75

10-1 10-0.5 100 100.5 101

P
ee

Eν (MeV)

0

2

5

10

Figure 2: Distortion of LMA survival probability by the the oscillation into
mirror neutrinos. The values of ∆m2

1 are indicated at the curves, in units of
10−13 eV2. Note the sizeable spectral distortion at low energies.

Another signature of this model is anomalous seasonal variations at low
energies.

The predicted distortion of low energy spectrum and anomalous seasonal
variations can be observed in future solar neutrino experiments, e.g. in LENS.
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4 Supernova neutrinos

Oscillations between active neutrinos may result in the observable effects,
most notably in appearance of νe and ν̄e with higher energies due to oscilla-
tions with νµ and ντ .

Oscillation into mirror neutrinos affects strongly the flux of neutrinos from
SN explosion when the phase φ = ∆m2l/4E becomes large (l is a distance
to SN). This condition can be written as

∆m2 � 1.3 × 10−19eV2

[

1 kpc

l

]

[

E

20 MeV

]

. (17)

This condition is reliably satisfied for the mirror models with gravitational
communication for a case of Galactic SN with the typical distance l ∼ 10 kpc
and neutrino energies 1 < E < 100 MeV. We shall shortly discuss two effects:
disappearance of active neutrinos in case of ordinary SN and their appearance
in case of mirror SN.

Disappearance of supernova neutrinos.
For the distance l typical for Galactic SN, the phase φ is large, sin2φ = 1/2
and due to maximal mixing of mirror and ordinary neutrinos all neutrino
flavors are suppressed by the same factor 1/2 (see Eq.(12) which results in
Plong(να) = 1/2). Therefore, oscillation to mirror (sterile) neutrinos does not
change the flavor ratios, and the effect of this oscillation is described entirely
by decreasing the total energy of the detected neutrinos Eν by factor 2. At
present,Eν cannot be predicted theoretically with such accuracy. But one
must keep in mind that in case of future Galactic SN many measurements
of SN parameters will be available, and Eν can be fixed theoretically with
better accuracy.

Appearance of neutrinos from mirror SN.
Explosion of mirror SN in our Galaxy will result, due to oscillation, in the
flux of active neutrinos, not accompanied by any other radiations. Energy
spectrum and flavor ratios will be a signature of SN neutrinos, while the
absence of any other signal from given direction will be an indication to
mirror SN.

5 UHE mirror neutrinos

.
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The mirror sources in the universe can provide the large fluxes of high-
energy neutrinos, not accompanied by other visible radiations. In contrast,
the diffuse flux from ordinary neutrino sources is restricted most notably by
cascade limit, which can be given as [20, 21]

E2Iν(E) ≤ c

4π
ωcas, (18)

where Iν(E) is high energy neutrino flux and ωcas is energy density of cascade
e-m radiation initiated by high energy electrons and photons, which always
accompany production of high energy neutrinos. Electromagnetic cascade is
developed due to collisions of the cascade paricles with microwave photons.
The energy density of the cascade radiation is limited by EGRET observa-
tion as ωcas ≤ (1 − 2) × 10−6 eV/cm3.

Oscillations
The mirror sources produce active neutrinos due to oscillation. The oscilla-
tions of mirror neutrinos into the visible ones are characterized by oscillation
length losc ∼ E/∆m2, much shorter than the typical cosmological distance
l ∼ 100 Mpc. The only exceptional case is given by oscillation of the res-
onant neutrinos with E0 ≈ 1 × 1013 GeV in the first “window” (see the
Fig. 1), where ∆m2

1 can be as small as 1× 10−13 eV2. Therefore, the average
suppression due to oscillation length is given by factor 1

2
.

The conversion of the sterile neutrinos into visible ones occurs through
two stages. Let us consider a sterile neutrino ν ′α born with a flavor α and
energy E. On the short length scale lshort ∼ E/∆M2, where ∆M2 = M2

i −M2
k

is the mass squared difference of the unperturbed states, ν ′α oscillates into two
other sterile flavors, and we have all three sterile neutrinos ν ′β with β = e, µ, τ .
On much longer scale llong ∼ E/∆m2, where ∆m2 is a scale of the window
splittings, sterile neutrinos oscillate into visible ones. Taking into account
that suppression factors due to oscillation length is 1/2, we can calculate the
probabilities Pν′ν for conversion of mirror neutrino ν ′α into visible neutrino
νβ, using Eqs. (12) and (13). In particular, for conversion of mirror muon
neutrino ν ′µ we obtain the probabilities

Pν′

µνe
=

sin2 2ω

8
, Pν′

µνµ
= Pν′

µντ
=

1

4
− sin2 2ω

16
, (19)

which depend only on the solar mixing angle ω. For conversion of mirror tau
neutrino ν ′τ one should replace ν ′µ by ν ′τ in Eq. (19). For completeness we also
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give the relevant probabilities for the mirror electron neutrino ν ′e conversion.

Pν′

eνµ
= Pν′

eντ
=

sin2 2ω

8
, Pν′

eνe
=

1

2
− sin2 2ω

4
. (20)

Note, that as follows from Eq. (12) the probability of conversion Pν′

ανβ
summed

over all visible neutrinos νβ is equal to 1
2
. It means that for Z-burst produc-

tion when all neutrino flavors participate in the resonant reaction, the total
oscillation suppression P (ν ′α → ν) = 1

2
.

Cascade limit for mirror neutrinos.
Mirror neutrinos oscillate into visible ones. An upper bound on the flux of
these neutrinos is provided by the resonant interaction of UHE neutrinos
with relic cosmological neutrinos, ν + ν̄ → Z0 → pions. As a result, one
obtains the cascade energy density as

ωcas = 2π
fh

ftot

σtnνi
t0E

2
0Iν(E0), (21)

where

E0 =
m2

Z

2mν

= 1.81 · 1013

(

0.23 eV

mν

)

GeV

is the resonant neutrino energy, nνi
is the density of DM neutrinos, ftot and

fhad are total and hadron widths of Z0 decay, respectively, and

σt = 48πfνGF = 1.29 · 10−32 cm2, (22)

is the effective νν̄-cross-section in the resonance.
Eq. (21) gives the upper bound on Iν(E0) which is very weak, due to factor
σtnνi

t0, as compared with that for visible neutrinos.

Fluxes of UHE neutrinos from mirror Topological Defects (TD).
I will follow here the cosmological scenario of Ref. [10], in which the density of
mirror matter (including photons and neutrinos) is suppressed, while mirror
topological defects are dominant as compared with visible sector. The crucial
feature of this cosmological model is existence of two inflatons, one interacting
with ordinary matter and another - with mirror matter. One inflaton reaches
potential minimum earlier than the other, and the matter produced by it is
diluted by the other inflaton which is still rolling down. The matter produced
by the first inflaton is by the definition the mirror one. As demonstrated in
Ref. [18] in case of gravitational interaction of mirror and ordinary matter,
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∆m2 for neutrino masses is too small to regenerate mirror neutrinos due
oscillations.

Despite the suppression of mirror matter, mirror topological defects can
dominate over the ordinary ones, as it is illustrated in Ref. [10] by curvature
driving phase transition. In this model, mirror topological defects are pro-
duced in a phase transition during inflation, when the mirror inflaton φ′ is
already at the minimum of its potential. The phase transition is triggered
when the spacetime curvature (which is driven by the ordinary inflaton po-
tential) decreases to some critical value. If this happens sufficiently close
to the end of inflation, the resulting defects are not strongly inflated. The
corresponding phase transition in the ordinary matter occurs much earlier,
and ordinary topological defects are almost completely diluted by inflation.

The mirror TD can provide UHE neutrino fluxes of order of upper limit
given by Eq. (18). As an example, we shall calculate here, following Ref. [10],
the neutrino fluxes from mirror necklaces, which can be very efficient HE
neutrino sources.

Necklaces are hybrid TDs formed by monopoles (M) and antimonopoles
(M̄), each being attached to two strings. The monopole mass m and the mass
per unit length of string µ are determined by the corresponding symmetry
breaking scales , ηs and ηm,

m ∼ 4πηm/e, µ ∼ 2πη2
s (23)

where e is the gauge coupling. The evolution of necklaces depends on the
parameter

r = m/µd (24)

which gives the ratio of the monopole mass to the average mass of string be-
tween two monopoles (d is the average string length between the monopoles).
It cannot exceed rmax ∼ ηm/ηs. As it is argued in Ref. [23], necklaces might
evolve towards a scaling solution with a constant r � 1, possibly approaching
r ∼ rmax. Monopoles and antimonopoles trapped in the necklaces inevitably
annihilate in the end, producing superheavy Higgs and gauge bosons (X par-
ticles) of mass mX ∼ eηm. The rate of X-particle production per unit volume
and time is

ṅX ∼ r2µ/t3mX (25)
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It is easy to estimate neutrino fluxes, assuming power-law energy spec-
trum of neutrinos produced at the decay of of X-particles. Normalizing neu-
trino flux by energy density of mirror neutrinos, ωmirr

ν we have

Iν(E) = (2 − p)xp−2
max

c

4π

ωmirr
ν

m2
X

(

E

mX

)−p

P, (26)

where xmax = Emax
ν /mX at the decay of X-particle, and P = 1/2 is probabil-

ity of oscillation to ordinary neutrino. The approximate power-law spectrum
of particles produced in X-decays is seen in MC simulations and DGLAP cal-
culations [22]. The exponent of spectrum p ≈ 1.9. Energy density of mirror
neutrinos can be estimated using Eq. (25) as

ωmirr
ν =

1

2
fπṅXmXt0, (27)

with fπ ≈ 0.7 being fraction of pions in X-decays [22]. In Fig. 3 we present
UHE neutrino flux calculated with help of MC and DGLAP methods [22] for
r2µ = 5 × 1031 GeV2 and mX = 1 × 1014 GeV. The calculated flux exceeds
the cascade upper limit for ordinary neutrino sources.

6 Conclusions

Mirror matter has a deep theoretical motivation, and it has a natural real-
ization in models with G×G′ symmetry, in particular in superstring models
E8 × E ′

8. The mirror symmetry can be exact, but it can be spontaneously
broken by different vev’s in ordinary and visible sectors. The most natural
communication between mirror and ordinary sectors is given by gravitational
interaction. It provides mixing of mirror and ordinary neutrinos with param-
eter µ ∼ v2

EW/MPl = 2.5×10−6 eV. Mirror neutrino is an excellent candidate
for sterile neutrino νs. To provide observable oscillation between active and
sterile neutrinos, νa ↔ νs, all known models of sterile neutrinos must have
mνs

fine tuned to mνa
. Mirror neutrinos meet this requirement naturally due

to mirror symmetry. Mirror neutrinos with gravitational mixing result in
subdominant, but observable effects in solar-neutrino physics: suppression
of low-energy (E < 1 MeV) neutrino fluxes and small anomalous seasonal
variation in MSW solution.

Another possible manifestation of mirror matter is existence of large fluxes
of UHE neutrinos with energies higher than 1 EeV. Production of neutrinos
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by mirror matter is not accompanied by other visible particles: all of them
have only gravitational interaction in detectors, and only mirror neutrinos
oscillate into active ones. The upper limit to flux of UHE active neutrinos
from mirror matter is induced only by resonant interaction with relic cosmo-
logical neutrinos (νUHE +νrel → Z0). This limit is a factor ∼ 300 higher than
cascade upper limit for ordinary neutrinos.

The large fluxes of UHE neutrinos from mirror matter can be realized in
two-inflaton cosmological scenario. In this model there are two inflatons, φ
and φ′, interacting with ordinary and mirror matter, respectively. One of
the inflatons reaches minimum of its potential earlier than the other. The
matter produced by it, is strongly diluted by another inflaton, which is still
rolling down to the potential minimum. The less abundant matter is called
the mirror one, as definition. Such suppression of mirror matter (including
the mirror photons and neutrinos) solves the problem of extra light particles
in cosmological nucleosynthesis. Reproduction of mirror neutrinos due to
oscillation is suppressed in scenario with gravitational communication by
smallness of ∆m2. Despite the suppression of mirror matter in two-inflaton
scenario, the mirror topological defects can dominate over the ordinary ones.
It occurs, for example, in a curvature-driven phase transition. The mirror
topological defects can provide UHE neutrino fluxes up to upper bound given
by resonant Z0 production.
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Figure 3: UHE active-neutrino flux (curve “mirror”) from mirror necklaces
with r2µ = 5×1031 GeV2 and mX = 1×1014 GeV. Cascade limit for ordinary
neutrino sources and upper limits on UHE neutrino fluxes from Rice, Glue
and Forte experiments are also shown.
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