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Abstract

The seesaw mechanism can explain why the neutrino masses are so
tiny with respect to the charged fermion masses. In the canonical ver-
sion it is the presence of the right-handed neutrino that is responsible
for it. In renormalizable grand unified theories with left-right gauge
symmetry it is possible to show quite generically that there is another
type of seesaw contribution, mediated by a heavy weak triplet. In this
talk I will show that such non-canonical seesaw mechanism can very
nicely connect b − τ Yukawa unification with the large atmospheric
neutrino mixing angle in the context of a SO(10) grand unified theory.
Also, a fit to the available low energy masses and mixings points to-
wards the domination of this non-canonical contribution with respect
to the canonical one. Finally I will explicitly present the minimal
supersymmetric SO(10) model with all the above nice features.

1 Introduction

The charged and neutral fermion sectors in the SM have quite different struc-
tures: 1) though very different among themselves, the charged fermions have
much larger masses than neutrinos, 2) the mixing angles in the quark sector
tend to be much smaller than the corresponding ones in the leptonic (neu-
trino) sector. While the first point can be easily accounted with the famous
seesaw mechanism [1], the second issue is more controversial.

The first nontrivial framework that could be predictive in both charged
fermion and neutrino sectors is SO(10) grandunification. This is because
it automatically incorporates the righthanded neutrino, thus providing for
a theory of the seesaw mechanism. Most important, the model connects
the neutrino and charged fermion mass matrices, providing some nontrivial
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relations between them at the grandunification scale. Then, with the as-
sumption of the desert, motivated by gauge coupling unification [2], one can
extrapolate the values of these masses and mixings down to low energies and
here compare them with experimental data. I will describe in some details
the origin and form of the neutrino mass matrix, and connect it to charged
fermion masses in the context of a SO(10) grand unified theory.

2 Seesaw

The left-handed neutrino ν (≡ νL) is a component of a weak SU(2)L doublet
with B − L = −1. If left-right symmetry is assumed, than a right-handed
neutrino νc (≡ Cν̄T

R) must exist as part of a doublet of SU(2)R gauge sym-
metry, with B − L = +1. Since νc is a standard model singlet, its mass is
given by the scale of SU(2)R (and B−L) breaking, which can be achieved in
a renormalizable version by the vev of a SU(2)R triplet (with B − L = −2),
MνR

∝ 〈∆R〉. This, Majorana mass term, must then be added to the Dirac
mass MνD

∝ 〈Φ〉 term with Φ a SU(2)L×SU(2)R bidoublet:

Lm = −νcT MνR
νc + νcT MνD

ν + h.c. . (1)

After integrating out the heavy νc one gets the famous seesaw [1] formula
for the light neutrino mass:

Mν = −MT
νD

M−1
νR

MνD
, (2)

which clearly connects the smallness of the neutrino mass with the largeness
of the SU(2)R breaking scale.

There is however another contribution to the seesaw [3], several times ne-
glected, but as we will see, of great potential importance. It comes essentially
from the following arguments: as we said, the large right-handed Majorana
mass comes from the vev of a SU(2)R triplet via the term νcT ∆Rνc, so due
to left-right symmetry an analog term νT ∆Lν must exist, with ∆L a triplet
under SU(2)L. With these two interaction terms plus the usual Dirac term
νcT Φν one can easily show that the one-loop box diagram contribution to
∆RΦ2∆L is UV divergent, so that such a term must be present already at
tree level. Thus, the potential for the triplets looks like

V = −M2
(

∆2
R + ∆2

L

)

+ ∆RΦ∆L , (3)
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with M a large mass (not much less than MGUT ). The last term represents
a tadpole for the lefthanded triplet:

〈∆L〉 ≈
〈∆RΦ2〉

M2
≈

M2
W

M
, (4)

since 〈∆R〉 ≈ M and 〈Φ〉 ≈ MW . So the term

νT 〈∆L〉ν (5)

gives another contribution to the seesaw. All together we thus have

MN = −MT
νD

M−1
νR

MνD
+ MνL

, (6)

where the first term represents the type I or canonical seesaw formula me-
diated by the SU(2)L singlet νc, while the second term is the SU(2)L triplet
contribution to the type II or non-canonical see-saw formula.

Of course, in general the matrices in generation space MνL
, MνR

and MνD

are arbitrary, so the above formula is not very useful. It is thus important
to connect the above matrices to the charged fermion sector, which is exper-
imentally better known. For this one needs a framework. We will choose the
most economical one, i.e. a SO(10) grand unified theory.

3 SO(10)

Although GUTs are not theories of flavours, they still put some constraints
on the possible Yukawa interactions, since different SM fields live in the same
representations. In SO(10) all the light fermions of each generation plus the
right-handed neutrino are grouped together in the 16-dimensional spinorial
representation, while in the most economical version the two light Higgs
doublets live in a fundamental 10-dimensional complex Higgs representation.
There is thus only one Yukawa matrix in generation space (3 × 3). A U(3)
rotation of the 16’s in generation space can diagonalize it, giving one good
prediction (yb = yτ = yt) and several bad ones (equality of charged lepton,
up and down quark Yukawas of the second and first generations, and no
mixing at all). A nontrivial quark mixing could be achieved adding a new
10-dimensional Higgs, but that would not help in improving the relations
among Yukawas of the first two generations. To see it, one can remember
that the 10-dimensional Higgs gets a vev in the (2, 2, 1) direction of the
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Pati-Salam SU(2)L×SU(2)R×SU(4)C subgroup. This means that such a vev
cannot break SU(4)C and thus the equality between leptons and quarks.
Thus, a nontrivial multiplet in SU(4)C (and bidoublet in the left-right sector)
is needed to get such a splitting. An ideal possibility is given by the Higgs in
the representation 126 (5 index antisymmetric and anti-self-dual) of SO(10):
its vev in the SU(3)C colour singlet state of the (2, 2, 15) direction is a possible
candidate. The Yukawa terms in the Lagrangian can thus be written as [4]

LY = 10H16T Y1016 + 126H16T Y12616 . (7)

These terms can be decomposed in the usual Pati-Salam basis as

10H = = (2, 2, 1) + (1, 1, 6) , (8)

16 = (2, 1, 4) + (1, 2, 4) , (9)

126H = (1, 3, 10) + (3, 1, 10) + (2, 2, 15) + (1, 1, 6) , (10)

where the fields in boldface have SU(3)C×U(1)em singlets and can thus gen-
erate a nonzero vev. The two colour singlet bidoublets are actually needed
to develop a vev in order to fit the light fermion masses, as we have just seen.
On top of that, the SU(2)R triplet (1, 3, 10) above is ideally suited to give
a large Majorana mass to the heavy right-handed neutrino νc from (2, 1, 4):
from here we can see the double role that the 126-dimensional Higgs can
play. Finally, the SU(2)L triplet in (3, 1, 10), if nonzero as conjectured in the
previous section, can contribute to the type II see-saw formula.

Denoting vu,d
10 and vu,d

126 the vevs from the bidoublets in 10H and 126H

and vL,R the vevs from the L or R triplets, one gets from (7) the following
expressions for the fermion masses:

MU = vu
10Y10 + vu

126Y126 , (11)

MD = vd
10Y10 + vd

126Y126 , (12)

MνD
= vu

10Y10 − 3vu
126Y126 , (13)

ME = vd
10Y10 − 3vd

126Y126 , (14)

MνR
= 〈(1, 3, 10)126〉Y126 = vRY126 , (15)

MνL
= 〈(3, 1, 10)126〉Y126 = vLY126 . (16)

Notice that the factor −3 from the 126H contribution in the lepton sec-
tor with respect to the quark one comes because the SU(3)C colour singlet

4



direction in 15 of SU(4)C is proportional to B − L ∝ diag(1, 1, 1,−3). Also,
the above relations are valid at the GUT scale only, so that the known ex-
perimental values of the masses and mixings must first be run up to that
energy using the renormalization group equations.

Expressions (11) and (12) are needed to evaluate the matrices Y10 and
Y126 in terms of the better known MU and MD. Their expressions are then
used in (14) as well as in the various neutrino matrices (13), (15) and (16)
to be used in (6). Defining

x =
vd
10v

u
126

vu
10v

d
126

, y =
vd
10

vu
10

, α =
16 (vu

126)
2

vLvRx2
, β =

4vd
126

vL

, (17)

one gets two matrix equations:

(1 − x)ME = 4yMU − (3 + x)MD , (18)

βMN = −α

[

3(1 − x)MD + (1 + 3x)ME

4

]

(MD − ME)−1

×

[

3(1 − x)MD + (1 + 3x)ME

4

]

+ (MD − ME) . (19)

4 Type I versus type II seesaw

What we want to find out is which type of seesaw is compatible with data.
To make the analysis simpler, let us study the situation of the 2nd and 3rd

generations only, as well as no CP violation (real parameters) [5].
Equation (18) has 6 known masses (mτ,µ, mt,c, mb,s), one known mixing

angle (θq = θcb), but 3 unknown parameters, x, y and the angle between the
orthogonal matrices that diagonalize ME and MD. Since the matrices are
all symmetric (due to its SO(10) origin), we have 3 equations, just enough.
After determining these parameters one can attack equation (19). We are
interested mainly in the leptonic mixing angle and this is determined as a
function of one single parameter, α. In the limit α → ∞ one remains with
a pure type I seesaw, while in the opposite case α → 0 and the seesaw is of
type II.

To get a feeling let us first consider the idealized situation of small second
generation masses (0 ≈ m2 � m3), but still finite quark mixing θq (although
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� 1). It is easy to show that the leptonic atmospheric mixing angle is given
by

tan 2θl =
sin 2θq

2 sin2 θq − ∆
, (20)

with

∆ =
1

1 − 9α
[−5α + (1 − 4α) ε] , ε =

mb − mτ

mb

. (21)

In the limit α → ∞ one gets ∆ = (5+4ε)/9, while the opposite case α → 0
gives ∆ = ε. Since the parameter ε is experimentally small (approximate b−τ
unification), the small α regime is the one that predicts a large atmospheric
angle: type II seesaw is thus favoured in these type of models.

Now we restore a finite mass of the second generation, but keep in mind
that they are small, i.e. that

mc

mt

,
ms

mb

,
mµ

mτ

, θq ≈ O(δ) , δ ≈ 10−2 . (22)

Writing in a schematic way (coefficients of order 1 are not explicitly writ-
ten) the neutrino mass matrix is

MN ≈ −α

(

δ δ/ε
δ/ε 1/ε

)

+

(

δ δ
δ ε

)

, (23)

where the first (second) matrix is the type I (II) seesaw contribution. The
atmospheric mixing angle is

tan 2θl ≈
δ (1 + α/ε)

δ(1 + α) + ε + α/ε
. (24)

If we further assume that ε ≈ O(δ) 1, we get

θl ≈ O(1) ⇐⇒ α ≤ O(δ2) . (25)

The dominant type I seesaw (α → ∞) is clearly excluded, since it would
predict a small mixing angle θl ≈ O(δ). Notice that without b− τ unification
(small ε) θl would be small in any case.

1This is not really compatible with the small tan β (≈ 10) regime, in which corrections
are under control. In this case a realistic ε ≈ 0.1, but (20) becomes much more complicated.
I thank Zurab Berezhiani for remarks and an enlightening discussion on this point.
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It is possible to understand why a large atmospheric mixing angle emerges
in type II seesaw [6]: the point is that the triplet contribution to the Majorana
neutrino mass is proportional to Y126 (16), but from (12) and (14) this Yukawa
is proportional to the difference MD − ME, so that in pure type II seesaw

MN ∝ MD − ME . (26)

Assuming small mixings one immediately obtains approximately

MN ∝

(

0 0
0 mb − mτ

)

, (27)

so that an unexpected connection between large atmospheric neutrino angle
and b − τ unification emerges from type II seesaw [6]:

large θatm ⇐⇒ b − τ unification . (28)

5 SUSY

Up to now we did not specify which is the grandunification theory we were
considering: the only requirements were that the Yukawas came from the
interactions of matter 16-dimensional representations with two complex Hig-
gses - 10H and 126H , and that they got some nonzero vevs in the relevant
directions. In order to show that this is possible and to find these vevs
as functions of parameters in the Lagrangian, we need to write down an ex-
plicit model. I will here shortly describe the minimal supersymmetric SO(10)
model, which has all the nice above features and is still consistent with data.

As we saw, in order to fit the fermion masses we need two Higgs represen-
tations, 10H and 126H . In supersymmetry, the presence of 126 is particularly
welcome, since its vev does not break R-parity. In fact (1, 3, 10), which vev
gives a large mass to the right-handed neutrino, has B − L = −2. R-parity
is given by

R = (−1)3(B−L)+2S (29)

and since the spin S of any vev is 0, the νc mass is R-parity even and so
does not break it at the large scale [7]. One can show that this is true all the
way to the electroweak scale, i.e. R-parity is exact [8]. This means among
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others that the lightest supersymmetric partner is stable and is thus a good
candidate for dark matter.

Now, in supersymmetry we need more than just 10H and 126H , since the
right-handed neutrino mass must be very large, on the order of the GUT
scale or so. This would strongly break supersymmetry by the D-terms, so
another Higgs - 126H (5 index antisymmetric and self-dual) - must be used
to cancel it. SO(10) symmetry allow the matter 16 to be coupled in the
superpotential only to 10, 126 and 120 (3 index antisymmetric) dimensional
representations, so this new 126H cannot change (7). Finally we need to
get two (practically) massless Higgs doublets, while heavy all colour triplets.
This can be achieved by first introducing the Higgs representation 210H (4
index antisymmetric) and then by one fine-tuning of the parameters in the
superpotential.

Such a renormalizable theory, with three matter 16, and with the Higgs
sector made of 10H , 126H, 126H and 210H [9] has the correct symmetry
breaking pattern [10] and has been shown to be the minimal grand unified
theory [11], i.e. the most predictive one.

6 Further developments

The three generation generalization [12] roughly confirms the consistency of
the type II seesaw with data, and predicts a quite large Ue3 ≈ 0.16. Type I
see-saw domination seems however still possible, especially after CP violating
phases are considered [13].

An interesting and necessary check of the model is to calculate the proton
decay rates of d = 5 operators. A preliminary study [14] shows that these
decays could easily be too fast and thus rule out the minimal model. The
question is of course of great importance, and a detailed analyses requires
the knowledge of the SO(10) Clebsch-Gordan coefficients [15].

Another issue is the gauge coupling unification: it has been shown, that at
least in some part of parameter space threshold corrections are under control
in spite of the large representations involved [16].

Finally, nonminimal models with 120 dimensional Higgses have been con-
sidered [17]: such models are less restrictive and fit slightly better the avail-
able experimental data. They represent interesting variations and general-
izations of the above mentioned models.

8



Acknowledgments

It is a pleasure to thank the organizers of the conference Quarks-2004 for
the invitation and the stimulating environment. I thank my friends Charan
Aulakh, Alejandra Melfo, Goran Senjanović, and Francesco Vissani for col-
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G. Senjanović, Phys. Rev. D 25 (1982) 3092.

[3] G. Lazarides, Q. Shafi and C. Wetterich, Nucl. Phys. B181, 287 (1981);
R. N. Mohapatra and G. Senjanović, Phys. Rev. D23, 165 (1981).
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