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Abstract

We review briefly lattice evidence for existence of lower-dimension
vacuum defects in SU(2) gluodynamics. On one hand, the defects
are known to be crucial for confinement, or physics in infrared. On
the other hand, the defects have non-trivial properties in ultravio-
let, exhibiting an infrared-ultraviolet fine tuning. We illustrate first
these properties on the example of central vortices, or two dimen-
sional vacuum defects. Most recently, evidence was found for existence
of three-dimensional domains whose total volume scales in physical
units. Technically, the domains are defined in terms of Z(2) projec-
tion of original gauge fields. The volume can be viewed also as the
minimal volume bound by the center vortices. We argue that the
three-dimensional domains are closely related to confinement.
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1 Introduction

It is a general trend in modern theoretical physics to consider extended ob-
jects, like strings and membranes. Usually, one applies these ideas to hypo-
thetical, high-dimensional completions of the four-dimensional world. How-
ever, lower-dimensional vacuum structures might have been observed also as
excitations within 4d gauge theories [1, 2]. A difficulty with presenting and
even the lattice data is that at present time there is no well developed frame-
work which would predict such structures. Observationally they appear to
be ‘quantum’ or lattice branes with huge entropy and action which balance
each other, for reviews see [3].

The vacuum fluctuations in point are in fact discussed since long and
nothing else but lattice monopoles and P-vortices, for review see, e.g., [4,
5]. However traditionally one has been emphasizing the relevance of these
fluctuations in the infrared, or to the confinement. What seems to have
been revealed more recently [1, 2] is that these structures have also highly
nontrivial ultraviolet properties. In particular, they appear to be infinitely
thin in terms of distribution of the non-Abelian action associated with them.
It is primarily this observation which allows to claim them to be physical
objects of lower dimension. Namely, monopoles appear to be 1d dimensional
objects (closed trajectories) while the central vortices are 2d branes.

The main emphasis here is on vacuum fluctuations observed by using
the so called central projection. The best known example of fluctuations
of this type are P-vortices. Most recently this projection allowed to ob-
serve three dimensional vacuum structures percolating through the vacuum
of the 4d SU(2) gauge theory [7, 8]. Since the observation is very recent
the confinement-related phenomenology of the new objects is not so much
developed as in case of the monopoles or central vortices. Nevertheless one
can argue that the three dimensional structures are probably related to the
confinement as well.
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2 P-vortices

2.1 Z2 gauge theory

There is no clear theoretical picture of confinement in the non-Abelian case
(for simplicity we concentrate on the SU(2) gluodynamics) 1. On the other
hand, in case of U(1) and Z2 gauge theories the proof of confinement is
quite straightforward, see [9] and [10], respectively. In the former case it is
percolation of the monopoles, known also as dual-superconductor model. In
the latter case it is percolation of the central vortices (see also below). Thus,
it is tempting to assume that degrees of freedom crucial for confinement are
retained if one narrows, or projects the original non-Abelian fields to their
Abelian or center-group subspace In this talk we will concentrate on the
center-group, or Z2 projection. .

The gauge Z2 theory can be defined only on the lattice. The variables
are links

Zµ(x) = ± 1

where x is a point in space-time while µ indicates the direction of the link.
The action depends only on the values of the plaquettes which are defined
as product of the corresponding links and, obviously, take on the values ±1
as well. The partition function is defined as

Z = Σ exp(−βA−) (1)

where β is a constant and A− is the total area of all the negative plaquettes
for a given configuration of the links.

It is quite clear that at large β, β → ∞ the area A− is negligible
while in the opposite limit, β → 0 the number of negative plaquettes is
not suppressed at all. Respectively, there are two phases corresponding to
the strong and weak couplings. For us, it is crucial that the strong-coupling
phase is confining. Indeed, let us calculate the Wilson loop in this phase.
For a given configuration of the Z2 fields the Wilson line is the product

W = ΠZW = Π(P laquettes)A (2)

where ZW are the values of the link variables along the Wilson loop while
(P laquettes)A are the values of the plaquettes covering an area bounded by

1By ‘confinement’ we understand here existence of a linearly rising potential for external
heavy quarks.
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the Wilson loop. The replacement of the product of the links by the product
of the plaquettes is an identity based on the fact that (Zµ(x))2 = 1.

Now, let us assume for a moment that the plaquettes take on the values
±1 randomly. Which means, in turn that we can calculate the expectation
value of the Wilson loop as a product of the expectation values of individual
plaquettes:

〈 W 〉 = 〈 P laquette 〉A , (3)

where A is the area bounded by the Wilson loop. Denote by p the probability
for a plaquette to be negative. Then (1−p) is the probability for a plaquette
to be positive and

〈 P laquette 〉 = (1 − p) · 1 + p · (−1) = (1 − 2p) , (4)

and
〈 W 〉 = exp (−σ · A) , (5)

where σ is the string tension equal to

σ =
| ln(1 − 2p)|

a2
, (6)

where a is the lattice spacing.
It is useful to introduce notion of P- or central- vortices. The vortices

are defined on the dual lattice. Namely, the plaquettes belonging to the P-
vortices are orthogonal to the negative plaquettes on the original lattice. In
four dimensions the plaquettes on the dual and original lattices intersect at
one point which coincides in fact with the centers of the two plaquettes. In
other words, the P-vortices pierce negative plaquettes. Moreover, one can
show that P-vortices are closed surfaces.

Now we can come back to our assumption that the plaquettes covering
the area bounded by the Wilson loop take on the values ±1 randomly. Let us
distinguish between finite and infinite clusters of P-vortices. Finite P-vortices
pierce the area in a correlated way, that is twice, and do not produce any
non-trivial effect on the Wilson loop. It is only infinite, or percolating cluster
which determines the probability p entering Eq (4).

2.2 Thick vortices

At first sight, consideration of the Z2 gauge theory does not help us at all to
understand confinement in the realistic case of non-Abelian theories. Indeed,
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negative plaquettes which play the crucial role in the Z2 case are unphysical
in the non-Abelian case 2.

Nevertheless, one can argue that the center group plays a central role
in the non-Abelian case as well [11]. Indeed, consider heavy quarks in the
fundamental and adjoint representations. It is only for the quarks in the
fundamental representation that we expect the potential to grow linearly at
large distances. The color charge of heavy quarks in the adjoint representa-
tion is screened by gluons and the heavy quark potential flattens out at large
distances.

Thus, quarks with half integer color isotopic spin are confined while
quarks with integer spin are not confined. Clearly, it is the center of the
group which distinguishes between integer and non-integer spins.

Thus, the picture with percolating P-vortices would be still helpful to
explain confinement. However, in the non-Abelian case one usually thinks
about the confining fields in terms of ‘soft’ fields 3, with gauge potential of
order Aµ ∼ ΛQCD. On a very qualitative level one could think in terms of
effective lattice with the ‘lattice size’ of order Λ−1

QCD. Then we could apply
the picture learned from the Z2 example. These vortices could be called
‘thick’ vortices. Roughly speaking, in the confining phase the Z2 symmetry
is not violated and the probabilities of a large Wilson loop to be positive or
negative are the same 4.

It is worth mentioning that the notion on importance of the group center
in formulating a criterion of confinement can be made precise [11]. Also,
theory of the thick vortices is well developed, for review see, e.g., [13, 5].

2.3 Central projection

.
For a long time, the notion of the thick vortices was used mostly in

theoretical constructions. Indeed, it is very difficult to suggest ways to detect
them, let it be on the lattice. However, a few years ago a method of central

2Indeed, there is no continuum field corresponding to the negative plaquettes and
according to the standard wisdom they could be thrown away altogether.

3We will partly question this picture below.
4At finite temperature T, the time direction is periodic. At some temperature the

Wilson line is not long enough to develop negative values, the Z2 symmetry is broken and
there is phase transition to deconfinement [12].
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projection was proposed which seemed to allow to tag thick vortices, for
history and details see [5].

The basic idea is to extract from a full configuration of non-Abelian fields
Z2 degrees of freedom which might be responsible for the confinement. This
is achieved by projecting the standard link variables Uµ(z) into Zµ(x) vari-
ables. ‘Projection’ means now simply replacement. For the projected fields
to memorize basic properties of the original filed configuration one chooses
the norm of the projected fields as close as possible to the norm of the original
fields.

In more detail, one uses first gauge invariance to minimize the functional

R = Σx,µ|Tr Uµ(x)|2 , (7)

where the sum is over the whole of the lattice. Then one maps the SU(2)
link variables Uµ(X) to Z2 elements by replacing

Zµ(x) = sign Tr[Uµ(x)] (8)

The discovery was that the linear quark potential (or string tension) eval-
uated in terms of the projected fields was rather close to the actual value
obtained in the full SU(2) theory. In any case, the property of the confine-
ment was certainly there in terms of the projected fields as well.

The P-vortices defined constructed on the projected fields are infinitely
thin by definition, the same as in case of Z2 gauge theory. However, as far as
the total area of the central vortices is concerned, there is a striking difference
from the Z2 case. Namely, according to the the measurements the total area
scales in the physical units:

Atot ≈ 4 (fm)−2 V4 (9)

where V4 is the total volume of the lattice. Observation (9) implies, in par-
ticular, that the fraction of all plaquettes which belong to the P-vortices is
proportional to (a · ΛQCD)2. Which is a spectacular phenomenon observa-
tionally.

2.4 Lattice branes

The main theoretical difficulty of interpreting the lattice results is the use of
the central projection. Indeed, the projection is defined in a highly non-local
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way and there is no direct relation between the original and projected fields.
And this makes any theoretical discussion very qualitative, at the very best.
Most common interpretation of the central vortices detected through the
central projection is that they tag thick vortices discussed above, for review
see [5]. In this way one gets qualitative explanation of appearance of the
ΛQCD scale in (9).

On the other hand, the picture of the central vortex following only loosely
thick vortices also has problems with explaining (9). Indeed it introduces in
fact a kind of conspiracy between infrared and ultraviolet properties. Imagine
that we are tending a → 0. Then the number of plaquettes covering a cross
section of the hypothetical thick vortex is growing as 1/a2. And nevertheless
the projection picks up exactly one negative plaquette per thick vortex.

This kind of a puzzle led to a search for ‘gauge invariant identity’ of the
plaquettes belonging to the P-vortices. The search brought an unexpected
result [1]: the P-vortices are distinguished by an ultraviolet divergent action.
Namely, the non-Abelian action associated with the central vortices is equal
to:

Svort ≈ 0.53
Avort

a2
(10)

where Svort = β(1− 1
2

< TrU vort
P >) is measured on the plaquettes U vort

P dual
to P-vortices. Moreover, Eq (10) refers actually to the excess of the action
with respect to the average over the whole lattice.

Another amusing result is that the excess (10) vanishes already on the
plaquettes next to the P-vortices. Thus, P-vortices have vanishing thickness
in terms of the distribution of the non-Abelian action. They are physical two-
dimensional objects. To distinguish them from hypothetical thick vortices
(which carry action of order Λ2

QCD · (Area)) one c 9 an call the vortices
revealed through projection lattice branes.

Let us emphasize again that (10) implies that P vortices are suppressed
by huge action, exp(−S) ∼ exp(−const ·(Area)tot/a

2), where the total area
does not change as the lattice spacing tends to zero in the continuum limit.
The probability to observe the vortex, however, is a product of the action
factor and entropy:

W (vortex) ∼ e(−const·A/a2) · (Entropy) . (11)

Thus, the very existence of the central vortices implies that their entropy
grows as an exponent of (Area)/a2. This dependence of the entropy on the
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lattice spacing was indeed confirmed by measurements [14]. The number in
front of the factor (Area)/a2 cannot be measured independently, however.

3 Three-dimensional defects

3.1 Removal of P-vortices

There is no regular way to search for lower-dimensional defects. Historically,
the monopoles and P-vortices emerged as candidates for confining field con-
figurations. The physical idea behind introduction of the monopoles and
vortices is, as mentioned above, that U(1) or Z2 degrees of freedom are re-
sponsible for the confinement.

There no further replicas of this idea. However, there exists another
remarkable observation [15] which might shed light on the nature of the
confinement. Namely, removal of the P-vortices eliminates both confinement
and spontaneous violation of the chiral symmetry.

In more detail, one determines first Zµ(x) projected fields (see above) and
then replaces the original link variables Ux,µ by new matrices Ũx,µ defined as

Ũµ(x) ≡ Uµ(x) · Zµ(x) , (12)

where the Z factors are ±1. Note that the substitution (12) changes the sign
only of the plaquettes pierced by P-vortices. The result [15] is that if one
evaluates the Wilson loop using the modified links (12) then the confining
potential disappears.

To give a feeling on the significance of the numerical results, let us mention
that we have repeated calculation of Ref [15] for β = 2.4. While the string
tension in the original theory equals to

χ = (0.093 ± 0.012)/a2 , (13)

where a is the lattice spacing, for the modified link variables we found:

χ = (0.0034 ± 0.0096)/a2 (14)

The result is indeed impressing and its theoretical appreciation could prob-
ably be crucial for understanding the nature of the confining fields.
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3.2 Minimization of negative links

Usually the procedure just described is dubbed as removal of the P-vortices.
There is a puzzle, however. Indeed, the total area of the vortices scales in
physical units and in this sense they represent d=2 defects. Furthermore, the
Wilson line is obviously a d=1 subspace. However, in four dimensions, d = 4,
the subspaces d=1 and d=2 do not intersect at all, generally speaking. For
a local change (like (12)) to affect the Wilson line one should change fields
at least on a d=3 subspace. Thus, no local change of the plaquettes on the
vortices can eliminate confinement.

The resolution of the paradox is that the field modification (12) affects
originally links, not plaquettes directly. And it would be too naive to assume
that it is only change of the plaquettes that counts. In quantum mechanics,
potentials are also significant, as demonstrated by the Aharonov-Bohm effect
(for related discussions see, in particular, [17]).

If we turn to consideration of links then the change (12) may look, to
the contrary, as an enormous modification of the original fields. Indeed, the
Z-projected fields, Zµ(x) = ±1 fall onto Zµ(x) = −1 in about half of all the
cases. And one could argue that it is not surprising that we lose confinement
by changing potentials on a half of the lattice.

Thus, it seems reasonable to ask what is the minimal number of links
which are to be changed to eliminate confinement through the procedure (12).
In other words, let us introduce ‘Landau-gauge’ in terms of the projected
fields. Minimizing the number of negative links one might hope to get a
gauge invariant, or physically significant result. In fact, this idea goes back
to the paper in Ref. [16].

The results of the measurements are represented in Fig. 1. We find,
indeed, that the negative links, after the minimization, occupy a 3d volume:

V3 ≈ 2(fm)−1 · V4 , (15)

where V4 is the lattice volume. Note also that Fig. 1 summarizes results of
two series of measurements. The difference between them is definition of the
Z2 projection. Namely, the procedure described above (see discussion of (7))
is called Direct Maximal Center Projection (DMCP). Another possibility is
to projects first the original fields into the closest U(1) fields configuration
and then perform the Z2 projection. The latter projection is called Indirect
Maximal Center Projection (IMCP), for references and details see, e.g., [8].
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Figure 1: Probability for a link to be negative in Z(2) gauge field configura-
tion after Z(2) Landau gauge fixing.

3.3 Confining fields in the ultraviolet

Thus, the minimization of the number of the negative links reveals another
vacuum defect, that is is 3d volume. Relation of these defects to the the
confinement is encoded in the statement that if we change in the ultraviolet
the links belonging to this volume, confinement disappears! Here, by ‘change
in the ultraviolet’ we understand multiplying the link variables by (-1).

Let us also emphasize that the change affects the number of links which
is a fraction of order (a ·ΛQCD) from the total and is vanishing in the contin-
uum limit. It might be the most important message to the continuum theory
obtained on the lattice: confinement can be uncoded from the Yang-Mills
theory by changing field on a submanifold which is vanishing in the contin-
uum limit. It seems quite obvious that none of the attempts on explaining
confining in the continuum theory is consistent with this observation 5.

5Of course, there is always a possibility that we have not reached yet, on the existing
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We can also now evaluate the average number of intersections of the
Wilson line with the 3d volume:

〈Nintersection〉 ≈ 0.5
PW

fm
, (16)

where PW is the perimeter of the Wilson line and there is no dependence
on the lattice spacing. Note also that if we would change randomly the
sign of links variables occupying the same volume as (15) we could change
only the perimeter dependence of the Wilson loop which is not linked to the
confinement.

There is another way to demonstrate that the fields Aµ ∼ 1/a are crucial
for the confinement. Let us introduce another change of the links. Namely
replace the original links Uµ(x) by unit matrix if the link belongs to the
minimal volume of the negative links:

Uµ(x) → I , if Zµ(x) = −1 in the Z2 Landau gauge . (17)

Then according to our measurements, for β = 2.4 the string tension changes
considerably and equals to:

χ ≈ 0.057/a2 , (18)

compare (13). This is a preliminary result, however.
Again the result (18), if confirmed, reveals features of the confining fields

which have never been thought of in the continuum theory. Indeed, we just
‘forget’ to account for a single link out of the number of order ∼ (2fm)/a
and still the string tension drops by order unit. Thus, if confirmed, (18)
would prove that fields of order Aµ ∼ 1/a are crucial for the confinement.

4 Conclusions

To summarize, the lattice evidence suggests that it is vacuum defects of lower
dimension which are responsible for the confinement. The defects exhibit fine
tuning between the infrared and ultraviolet. For example, the total area of

lattices, values of the lattice spacing a which can consistently be considered as being small.
However, this would also imply that the confinement which has been observed so far on
the lattice is just by coincidence looks as the confinement considered in the continuum
theory.
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the 2d defects scales in the physical units (see (9)) while their action is ultra-
violet divergent, see (10). In other words, there is self-tuning of the confining
field configurations which exhibit power dependence both on the infrared
scale (ΛQCD) and the ultraviolet scale (lattice spacing a). Theoretically, this
phenomenon has no explanation yet. One check, however, that the ultravio-
let divergence in the action (10) is in no contradiction with the asymptotic
freedom [18]. Moreover, the self-tuning could have been possibly explained
if a dual formulation of the Yang-Mills theories were found [19].
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