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Abstract

Accounting for double-logarithms of x and running QCD coupling
leads to expressions for both the non-singlet and singlet components
of g1 quite different compared to the DGLAP-ones. These expressions
manifest the Regge asymptotics when x → 0 and differ considerably
from the DGLAP expressions at small values of x.

1 Introduction

As is well known, deep inelastic scattering (DIS) is one of the basic processes
for probing the structure of hadrons. From the theoretical point of view, the
inclusive cross section of DIS is a convolution of the leptonic and hadronic
tensors, with the information about the structure of the hadrons participating
into DIS coming from the hadronic tensor . the forward Compton amplitude,
when a deeply off-shell photon with virtuality q2 scatters off an on-shell
hadron with momentum p. The spin-dependent part, W spin

µν , of the hadronic
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tensor is parametrized in terms of two structure functions, g1 and g2, as

W spin
µν = ıεµνλρ

qλm

pq

[
Sρg1 +

(
Sρ −

(Sq)

pq
pρ

)
g2

]
(1)

≈ ıεµνλρ
qλm

pq

[
S ||

ρg1 + S⊥
ρ

(
g1+g2

)]
,

so that g1 is related to the longitudinal hadron spin-flip scattering, whereas
the sum g1 + g2 is relative to the transverse spin-flips. In Eq. (1), m stands

for the hadron mass, S
||
ρ and S⊥

ρ are the longitudinal and transverse (with
respect to the plane formed by p and q) components of the hadron spin Sρ.
Both g1 and g2 depend on x = −q2/2pq, 0 < x ≤ 1 and Q2 = −q2 > 0.
Obviously, small x corresponds to s = (p + q)2 ≈ 2pq � Q2. In this case,

S
||
ρ ≈ pρ/m and therefore the part of W spin

µν related to g1 does not depend on
m. When Q2 � m2, one can assume the factorization and regard W spin

µν as
a convolution of two objects: The first one is the probability Φ (Φ = Φq and
Φ = Φg to find a polarized parton (a quark or a gluon) within the hadron.

The second one is the partonic tensor W̃ spin
µν defined and parametrized simi-

larly to W spin
µν . Whereas the partonic tensor W̃ spin

µν , i.e. the partonic structure
functions g1 and g2, can be studied within perturbative QCD, Φq,g are es-
sentially non-perturbative objects, The lack of knowledge of Φ is usually
compensated by introducing initial parton distributions which can be found
from phenomenological considerations. In doing so, the non-singlet compo-
nent gNS

1 of g1 is usually expressed as a convolution of a piece which we
denote gNS

q from purely evolution, and the initial polarized quark density
∆q:

gNS
1 = gNS

q ⊗ ∆q . (2)

Similarly, the singlet structure function gS
1 is expressed in terms of the evo-

lution pieces gq and gg and the densities of the polarized quarks and gluons,
∆q and ∆g:

gS
1 = gq ⊗ ∆q + gg ⊗ ∆g . (3)

The subscripts q, g in Eqs. (2,3) refer to the kind of the initial partons. We
remind that there is no rigorous procedure for calculating ∆q and ∆g. They
have to be found from phenomenological considerations. On the contrary,
there are regular perturbative methods for calculating the evolution parts
gNS

q and gq,g of g1. When Q2 is much greater than the starting point µ2 of
the Q2-evolution and at the same time x � 1, it is convenient to rewrite
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Eqs. (2,3) in the form of the Mellin integral:

gNS
1 =

∫ ı∞

−ı∞

dω

2πı
(1/x)ωCNS(ω)eγNS(ω) ln(Q2/µ2) , (4)

gS
1 =

∫ ı∞

−ı∞

dω

2πı
(1/x)ω

[
Cq(ω)∆q(ω) + Cg(ω)∆g(ω)

]
×

×eγS(ω) ln(Q2/µ2) ,

with CNS(ω), Cq,g(ω) being the coefficient functions and γNS(ω), γS(ω) the
non-singlet and singlet anomalous dimensions respectively. The anomalous
dimensions control the Q2-evolution and the coefficient functions govern the
s-evolution which, at fixed Q2, is equivalent to the x-evolution.

The best known instrument to calculate the DIS structure functions is
the DGLAP[1] approach. In the DGLAP framework, both the coefficient
functions and the anomalous dimensions are perturbatively known and rep-
resented by their one-loop, (or leading order (LO)) [1] and two-loop (next-to-
leading order (NLO)) contributions. The relevant Ref.s concerning the NLO
calculations can be found in the review [2]. The remaining ingredients to the
rhs of Eq. (4), ∆q and ∆g can be taken, for example, from Ref. [3]. DGLAP
provides a quite good description of the experimental data[3]. The extrap-
olation of DGLAP into the small-x region predicts an asymptotic behavior
∼ exp(

√
C ln(1/x) ln ln Q2) for all DIS structure functions (with different

factors C). However, from a theoretical point of view, such an extrapolation
at the small-x is rather doubtful. In particular, it neglects in a systemat-
ical way contributions ot the type ∼ (αs ln2(1/x))k which are small when
x ∼ 1 but become relevant when x � 1. The total resummation of these
double-logarithmic (DL) contributions was made in Refs. [4] and Ref. [5] for
the non-singlet (gNS

1 ) and singlet g1 respectively, and it leads to the Regge
(power-like) asymptotics g1(g

NS
1 ) ∼ (1/x)∆DL

((1/x)∆DL

NS), with ∆DL, ∆DL
NS be-

ing the intercepts calculated ib the double-logarithmic approximation (DLA).
The weak point of this resummation in Refs. [4],[5] is the assumption that αs

is kept fixed (at some unknown scale). It leads therefore to the value of the
intercepts ∆DL, ∆DL

NS explicitly depending on this unknown coupling, while αs

is well-known to be running. The results of Refs. [4],[5] had led many authors
(see e.g.[6]) to suggest that the DGLAP parametrization αs = αs(Q

2) has to
be used. However, according to results of Ref. [7], such a parametrization is
indeed correct for x ∼ 1 only and cannot be used for x � 1. The appropriate
dependence of αs suggested in Ref. [7], has been successfully used to calculate
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both gNS
1 and g1 singlet at small x in Refs. [8]. In the present talk we review

these results.
Instead of a direct study of g1 like it is done in DGLAP, it is more conve-

nient to consider the forward Compton amplitude A for the photon-parton
scattering. As already stated above, we cannot use DGLAP for studying
g1 or A at small x because it does not not include the total resummation
of the double- and single-logarithms of x for the anomalous dimensions and
coefficient functions, and also the αs-parametrization used is valid for x not
far from 1.

Then, in order to account for the double-logs of both x and Q2, we need to
construct a kind of two-dimensional evolution equations that would combine
both the x- and Q2- evolutions.

Such equations should sum up the contributions of the Feynman graphs
involved to all orders in αs. Some of those graphs have either ultraviolet
or infrared (IR) divergences. The ultraviolet divergences are regulated by
the usual renormalization procedure. In order to regulate the IR ones, we
introduce an IR cut-off µ in the transverse momentum space for the momenta
ki of all virtual quarks and gluons:

µ < ki⊥ (5)

where ki⊥ stands for the transverse (with respect to the plane formed by the
external momenta p and q) component of ki. This technique of regulating
the IR divergences was suggested by Lipatov and used first in Ref. [9] for
quark-quark scattering. Using this cut-off µ, A acquires a dependence on
µ. Then, one can evolve A with respect to µ, constructing the appropriate
Infrared Evolution Equations (IREE).

2 infrared evolution equations for g1

The system of the infrared evolution equations for g1 is

(
ω +

∂

∂y

)
Fq(ω, y) =

1

8π2

[
Fqq(ω)Fq(ω, y) + Fqg(ω)Fg(ω, y)

]
,

(
ω +

∂

∂y

)
Fg(ω, y) =

1

8π2

[
Fgq(ω)Fq(ω, y) + Fgg(ω)Fg(ω, y)

]
. (6)

The amplitudes Fq, Fg are related to Aq, Ag through the Mellin transform.
The amplitudes Fik, with i, k = q, g, describe the parton-parton forward
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scattering. They contain DL contributions to all orders in αs. We can intro-
duce the new anomalous dimensions Hik = (1/8π2)Fik. The subscripts “q,g”
correspond to the DGLAP-notation. Solving this system leads to

gq(x, Q2)=

∫ ı∞

−ı∞

dω

2πı
(1/x)ω

[
C+(ω)eΩ+y + C−(ω)eΩ

−
y
]

, (7)

gg(x, Q2)=

∫ ı∞

−ı∞

dω

2πı
(1/x)ω

[
C+(ω)

X+
√

R

2Hqg

eΩ+y +

+C−(ω)
X−

√
R

2Hqg
eΩ

−
y
]

The unknown factors C±(ω) have to be specified and will be discussed
later. All other factors in Eq. (7) can be expressed in therms of Hik:

X = Hgg − Hqq, R = (Hgg − Hqq)
2 + 4HqgHgq (8)

Ω± =
1

2

[
Hqq + Hgg ±

√
(Hqq − Hgg)2 + 4HqgHgq

]
.

The anomalous dimension matrix Hik was calculated in Ref. [8]:

Hgg =
1

2

(
ω + Y +

bqq − bgg

Y

)
, Hqq =

1

2

(
ω + Y − bqq − bgg

Y

)
, (9)

Hgq = −bgq

Y
, Hqg = −bqg

Y
.

where

Y =−
(
ω2−2(bqq+bgg)+

+
√

[(ω2−2(bqq+bgg))2−4(bqq−bgg)2−16bqgbgq]
)1/2

/
√

2 , (10)

bik = aik + Vik, (11)

aqq =
A(ω)CF

2π
, agg =

2A(ω)N

π
, (12)

agq = −nfA
′(ω)

2π
, aqg =

A′(ω)CF

π
,

and
Vik =

mik

π2
D(ω), (13)
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with

mqq =
CF

2N
, mgg = −2N2, mqg = nf

N

2
, mgq = −NCF . (14)

We have used here the notations CF = 4/3, N = 3 and nf = 4. The quantities
A(ω) and D(ω) account for the running of αs. They are given by the following
expressions:

A(ω) =
1

b

[ η

η2 + π2
−

∫ ∞

0

dρe−ωρ

(ρ + η)2 + π2

]
, (15)

D(ω) =
1

2b2

∫ ∞

0

dρe−ωρ ln
(
(ρ + η)/η

)[ ρ + η

(ρ + η)2 + π2
+

1

ρ + η

]
(16)

with η = ln(µ2/Λ2
QCD) and b = (33 − 2nf)/12π. A′ is defined as A with the

π2 term dropped out.
Finally we have to specify the coefficients functions C± appearing in

Eq. (7). When Q2 = µ2,

gq = ∆̃q(x0), gg = ∆̃g(x0) (17)

where ∆̃q(x0) and ∆̃g(x0) are the input distributions of the polarized partons
at x0 = µ2/s. They do not depend on Q2. Eq. (17) allows us to express
C±(ω) in terms of ∆q(ω) and ∆g(ω), which are related to ∆̃q(x0) and ∆̃g(x0)
through the ordinary Mellin transform. Indeed,

gq(x, Q2)=

∫ ı∞

−ı∞

dω

2πı
(1/x)ω

[(
A(−)∆q+B∆g

)
eΩ+y+

+
(
A(+)∆q−B∆g

)
eΩ

−
y
]

, (18)

gg(x, Q2)=

∫ ı∞

−ı∞

dω

2πı
(1/x)ω

[(
E∆q + A(+)∆g

)
eΩ+y+

+
(
−E∆q+A(−)∆g

)
eΩ

−
y
]

(19)

with

A(±) =
(1

2
± X

2
√

R

)
, B =

Hqg√
R

, E =
Hgq√

R
. (20)

Eqs. (18, (19) express g1 in terms of the parton distributions ∆q(ω) and
∆g(ω), which are related to the distributions ∆̃q(x0) and ∆̃g(x0) at very low
x: x0 ≈ µ2/s � 1. Therefore, they hardly can be found from experimental

6



data. It is much more useful to express gq, gg in terms of the initial parton
densities δ̃q and δ̃g defined at x ∼ 1. We can do it, using the evolution of
∆̃q(x0), ∆̃g(x0) with respect to s. Indeed, the s-evolution of δ̃q, δ̃q from
s ≈ µ2 to s � µ2 at fixed Q2 (Q2 = µ2) is equivalent to their x-evolution
from x ∼ 1 to x � 1. In the ω-space, the system of IREE for the parton
distributions looks quite similar to Eqs. (6). However, the eqs for ∆q, ∆g are
now algebraic because they do not depend on Q2. Solving them, we obtain:

∆q =
(< e2

q > /2)
[
ω(ω − Hgg)δq + ωHqgδ̂g

]
[
ω2 − ω(Hqq + Hgg) + (HqqHgg − HqgHgq)

] , (21)

∆g =
(< e2

q > /2)
[
ωHgqδq + ω(ω − Hqq)δ̂g

]
[
ω2 − ω(Hqq + Hgg) + (HqqHgg − HqgHgq)

] . (22)

Therefore g1 is expressed in terms of the initial parton densities δq, δg.
When we put Hqg = Hgq = Hgg = 0 and do not sum over eq, we arrive

at the expression for the non-singlet structure function gNS
1 : Obviously, in

this case A(+) = B = E = Ω− = 0, A(−) = 1, Ω+ = Hqq. However,
the nonsinglet anomalous dimension Hqq should be calculated in the limit
bgg = bqg = bgq = 0. We denote such Hqq ≡ HNS and arrive at

gNS
1 =

e2
q

2

∫ ı∞

−ı∞

dω

2πı

( ωδq

ω − HNS

)(
1/x

)ω
(
Q2/µ2

)HNS

. (23)

3 Small-x asymptotics for g1

When x → 0 and Q2 � µ2, one can neglect contributions with Ω− in Eqs. (7).
As is well known, g1 ∼ (1/x)ω0 at x → 0, with ω0 being the position of the
leading singularity of the integrand of g1 . According to Eqs. (9), the leading
singularity, ωNS for gNS

1 is the rightmost root of the equation

ω2 − 4bqq = 0 (24)

while the leading singularity, ω0 for g1 is the rightmost root of

ω4 − 4(bqq + bgg)ω
2 + 16(bqqbgg − bqgbgq) = 0 . (25)

In our approach, all factors bik depend on η = ln(µ2/ΛQCD), so the roots
of Eqs. (24,25) also depend on η. We call intercepts the maximums of these
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roots:

gNS
1 ∼ e2

qδq(1/x)∆NS(Q2/µ2)∆NS/2, (26)

g1 ∼ (< e2
q > /2)[Z1δq + Z2δg](1/x)∆S(Q2/µ2)∆S/2,

and we find for the intercepts

∆NS ≈ 0.4, ∆S ≈ 0.86 (27)

and Z1 = −1.2, Z2 = −0.08. This implies that gNS
1 is positive when x → 0

whereas gS
1 can be either positive or negative, depending on the relation

between δq and δg. In particular, g1 is positive when

15δq + δg < 0. (28)

otherwise it is negative. In other words, the sign of g1 at small x can be
positive if the initial gluon density is negative and large.

4 gNS
1 at finite values of x

Let us estimate the impact of the total resummation of DL and SL contribu-
tions on gNS

1 . According to Eq. (23), the value of g1(x, Q2)NS depends both
on the perturbative terms and on the inputs ∆q. The latter can be obtained
by fitting the experimental data and it is known (see e.g. [3]) that widely
different formulae for ∆q can be used. In order to avoid discussing the fitting
procedure and as in this paper we present our results only the perturbative
part of gNS

1 , we can assume

∆q = δ(1 − x) . (29)

Then let us calculate the ratios

RLO = gNS
1 /g̃1

NS
LO , RNLO = gNS

1 /g̃1
NS
NLO , (30)

where g̃1
NS
LO is the LO DGLAP non-singlet gNS

1 with the one-loop anomalous
dimension and g̃1

NS
NLO is the NLO DGLAP gNS

1 with the two-loop anomalous
dimension. The results of a numerical calculations for R at Q2 = 20GeV2,
µ = 1.5GeV are shown in Fig. 1. Fig. 1 demonstrates that the impact of the
total resummation of DL contributions is not sizable for x ≥ 0.1 but it grows
fast with decreasing of x. In particular, RLO achieves the value RLO = 4
quite fast, at x = 10−2 whereas RNLO = 4 only at x = 10−4.
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Figure 1: Comparison of RLO (dashed curve) to RNLO (solid curve).

5 Conclusion

The total resummation of the most singular (∼ αn
s /ω2n+1) terms in the ex-

pressions for the anomalous dimensions and the coefficient functions leads
to the expressions for the singlet and the non-singlet structure functions g1.
It guarantees the Regge (power-like) behavior (26) of g1, gNS

1 when x → 0,
with the intercepts given by Eq. (27). The intercepts ∆NS, ∆S are obtained
with the running QCD coupling effects taken into account. The value of the
non-singlet intercept ∆NS ≈ 0.4 is now confirmed by several independent
analysis [11] of experimental data and our result ∆S ≈ 0.86 is in a good
agreement with the estimate of Ref. [12]: ∆S = 0.88 ± 0.14 obtained from
analysis of the HERMES data. Eq. (23) states that gNS

1 is positive both at
x ∼ 1 and at x � 1. The situation concerning the singlet g1 is more involved:
being positive at x ∼ 1, the singlet g1 can remain positive at x � 1 only
if the initial parton densities obey Eq. (28), otherwise it becomes negative.
The ratio of our results versus the DGLAP ones for non-singlet g1 is given
in Fig. 1. It shows explicitly that the impact of high-order DL contributions
is small at x ≥ 0.1 but it grows fast when x is approaching 10−3 − 10−4.
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