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Abstract

We analyze the structure of current-current correlators in coordi-
nate space in large Nc limit when the corresponding spectral density
takes the form of an infinite sum over hadron poles. The latter are
computed in the QCD string model with quarks at the ends, includ-
ing the lowest states, for all channels. The corresponding correlators
demonstrate reasonable qualitative agreement with the lattice data
without any additional fits. Different issues concerning the structure
of the short distance OPE are discussed.

1 Introduction

Correlators of hadron currents (denoted as CC in what follows)

P(c)(x) = 〈j(c)(x)j(c)(0)†〉 (1)

are the basic elements in QCD which have been studied in the framework
of perturbation theory [1] and also using the Operator Product Expansion
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(OPE) [2]. More recently CC have been the subject of exciting lattice cal-
culations [3, 4] as a tool to study nonperturbative vacuum configurations.
Since then it has been realized that CC can provide information of two sorts:
a) one is encoded in the hadron mass poles m2

n and quark coupling constants
cn and can be associated with the long distance dynamics (LDD), b) another
kind of information can be extracted from the behavior of P (c)(x) at small
x (or at large Q2 from the Fourier transform P (c)(Q)) with the help of the
OPE (see, e.g. [5]) where the coefficients represent vacuum matrix elements
of local field operators.

We do not address general issues of the OPE structure here (see [8] and
references therein in this respect). Instead we shall compare below the ex-
plicit expression of CC in LDD at large Nc with the lattice data [3, 4]. These
data provide an essential information on CC in the range 0 ≤ x ≤ 1.5 fm
where both large distance dynamics (LDD) and small distance dynamics
(SDD) are present and therefore one may check in principle i) the region of
validity of the standard OPE, ii) the transition region from SDD to LDD and
the quark-hadron duality (QHD), iii) the validity of specific vacuum models
and finally iv) the validity of LDD.

In the latter case one has large Nc limit where there is a solid knowl-
edge of the spectrum properties [9]. Some aspects of OPE at large Nc have
been discussed recently in [10]. Let us remind that the masses and residues
(properly normalized) of CC, mn and cn, are stable at large Nc limit, and
recent lattice data (see [11] and references therein) confirm that typically
corrections to stable quantities for Nc = 4, .., 8 are small.1 Moreover at large
Nc one can in principle compute the hadron spectrum (i.e. the set of mn,
cn) quasiclassically in analytic form for all n and thus calculate CC explic-
itly. This was done for the masses (see [12] and references therein) and the
residues ([13], see also [14]) and compared in [15] with OPE, SVZ sum rules
and experiment. In doing so one encounters and solves several important
problems, which we briefly comment on below.

First, the knowledge of mn, cn at large Nc allows to find the limit of the
CC at large Q (small x) and compare it with the quark-partonic expression,
thus checking the quark-hadron duality which was suggested long ago and
studied since then in numerous works (see reviews [16] containing extensive
lists of references to the original papers).

1In what follows the flavour-singlet channels where corrections can be large, are not
considered.
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Secondly, the large Nc LDD provides the small x OPE with coefficients
depending only on the string tension σ, and this LDD OPE is to be distin-
guished from the standard, or SDD OPE. These two types of OPE are in
principle distinct, however in the vector channel both agree with the experi-
mental e+e− data, as was shown in [15]. Many efforts have been undertaken
to match these OPE’s (see, e.g. [18, 19, 20]), but here we do not follow this
line.

Since theoretical CC in LDD contain no adjustable parameters at all, and
are computed in terms of fixed values of σ and αs only (and final forms of
CC contain only two fixed masses, expressed through σ, αs) this comparison
has a form of a fixed prediction.

The data from [3] we are going to compare with were obtained on 163×24
lattice with the spacing 0.17 Fm and β = 5.7, while the author of [4] used
the lattice of the total size 1.5 Fm and the spacing 0.13 Fm at β = 5.9
Both simulations were performed in quenched approximation, however the
current fermions were taken into account differently. An interested reader
is encouraged to consult the original papers [3, 4] for all technical details
concerning the simulations.

2 The model

The model of zero-width equidistant resonances [23, 24, 25] has been analyzed
in different respects in connection with OPE and large Nc QCD, where the
main interest has been concentrated on the momentum-space representation
[18, 19]. We are following a different path, keeping ourselves in coordinate
space.

The main object of our interest is the current-current correlator in coor-
dinate space given by (1), where the current j(c)(x) = ψ̄(x)Γcψ(x) is defined
for the given channel c. We consider only flavor nonsinglet charged currents
(of the type ūΓd) in this paper. The matrix Γc carries Lorentz, flavor and
color indices (with the latter structure being always δαβ), corresponding to
quantum numbers of the channel c. So we have for vector (ρ - channel),
axial (a1 - channel), pseudoscalar (π - channel) and scalar (a0 - channel) the
following expressions for the (charged) currents

j(v)
µ (x) = ūγµd ; j(a)

µ (x) = ūγµγ5d ; j(p)(x) = ūiγ5d ;

j(s)(x) = ūd (2)
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We adopt the standard normalization of [1, 2], which is different for neutral
currents by a factor 1/

√
2 from the one used in [5].

Needless to say that each channel has its own typical features and gener-
ally speaking should be analyzed separately. Our procedure, on the contrary,
is rather uniform. Due to the lack of space we demonstrate here the results
only for the vector channel. The situation in the other channels as well as
the corresponding lattice data are discussed in details in the paper [32] this
talk is based on.

It is convenient to factor out the free part of the correlator (1) and to
define the ratio R(c)(x) as

R(c)(x) =
P(c)(x)

P(c)
free(x)

(3)

where by definition for the vector and axial channels the sum over Lorentz
indices is always taken:

P(v,a)(x) = gµν P(v,a)
µν (x) (4)

The free part P (c)
free(x) is given by the following expression in the chiral limit:

P(v,a,p,s)
free (x) =

Nc

π4x6
· (2, 2, −1, −1) (5)

The important relation R(c)(x) has to obey is given by (see discussion in [32])

lim
x→0

R(c)(x) = 1 (6)

We find it instructive to explain our attitude, which in some respects is
different from that of the cited papers [18, 19, 20]. Our basic assumption
is that QCD exhibits confinement in the form of minimal area law in large
Nc limit. Since we always have in mind large Nc, the picture of zero-width
states is justified and the confinement property guarantees the spectrum to
be discrete. We get for the imaginary part of polarization operator

1

π
Im Π(s) =

∞
∑

n=0

cn · δ(s−m2
n) (7)

The mass spectrum is obtained quasiclassically to have the following form
[15, 17, 29]

m2
n = m2

0 +m2n (8)
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where the quantity m2 is defined universally for all channels to be m2 = 4πσ
as it was found by the quasiclassical analysis (see also [31] and references
therein). Here σ is physical string tension. The residues for the ground state
and the excited states are treated differently. As for the latter, they are
fixed by the requirement of quark-hadron duality. The lowest state residue
is chosen in different physically motivated ways for different channels (see
below). Our approach is phenomenological in this respect, since we have not
computed all cn starting from some consistent theoretical scheme (it will be
done elsewhere). It is worth stressing however, that we do not perform any
kind of fitting procedure. In some sense, we have no fitting parameters at all
in our formulas since all quantities like m0, σ take their physical values. We
do not try to fit the lattice data, instead, we use them for comparison with
the results of quasiclassical spectrum of large Nc QCD.

2.1 Vector channel

For conserved vector current one can write the following expression in mo-
mentum space

P(v)
µν (q) = i

∫

d4x P(v)
µν (x) exp(iqx) = (qµqν − q2gµν)Π

(v)(q2) (9)

and the determination of Π(v)(q2) for −q2 = Q2 > 0 is of interest.
It was shown in [13, 15, 17] that for a system made of relativistic quarks

connected by the straight-line string with tension σ one has

m2
n = 2πσ(2nr + L) +m2

0 ; cn =
Nc

12π2
· 4πσ (10)

which leads to

Π(v)(−Q2) =
λ2

ρ

Q2 +m2
0

+
Nc

12π2

∞
∑

n=1

an

Q2 +m2
n

(11)

where
m2

n = m2n +m2
0 ; an = m2 = 4πσ (12)

Despite we work in the large Nc framework, we have kept the factor Nc in
front of the second term in (11) in order to make contact with the asymptotic
expression (13). The residue of the first (ρ-meson) pole should in principle be
calculated in the same dynamical framework, which is used for the spectrum

5



calculation.2 The condition (10) provides the quark-hadron duality in this
channel:

Π(v)(−Q2)
Q2→∞−→ − Nc

12π2
log

(

Q2

µ2

)

(13)

Numerically we use values m2
0 = M2

ρ = 0.6 GeV2, λ2
ρ = 0.047 GeV2 and

m2 = 4πσ = 2.1 GeV2, corresponding to σ = 0.17 GeV2. The value of λ2
ρ

is consistent with the one used in [5, 20] and also the one computed in [30].
Notice that in the latter case we are not to take into account the large O(αs)
correction which is not seen in lattice simulations. It is interesting that the
value of the lowest state residue λ2

ρ is different from the asymptotic value cn
by less than 15% in our case.

Since we want to compare our model with the lattice results, the Wick
rotation has to be performed. The reader is referred to the paper [32] where
all relevant formulas are collected. The resulting expression in coordinate
space, corresponding to (11) is given by:

R(v)(z) = ξz5K1(z) +
bz6

27
p̄b(z) (14)

where dimensionless distance z = xEm0 and mass ratio b = m2/m2
0 have

been introduced and

ξ =
π2

8

(

λ2
ρ

m2
0

− b

4π2

)

(15)

The universal function p̄b(z) is given by

p̄b(z) =

∞
∫

0

du

u2
exp

(

− z2

4u
− u

)

1 + exp(−bu)(b− 1)

(1 − exp(−bu))2
(16)

As it has already been mentioned, we have three parameters in the expression
(14): m0, which fixes the overall scale of distance, λ2

ρ and b characterizing the
spectrum, and all of them are fixed by their physical values. The resulting
plot is shown on Figs. 1.1 and 1.2, to be compared with the lattice data
of [3] and [4], respectively. One sees reasonable qualitative agreement with
the lattice data. In fact, the results from [3] and from [4] were obtained

2This is also true for higher resonances, however, we choose another way and fix those
residues by quark-hadron duality for those channels where cn have not yet been calculated
dynamically. Notice that in some channels like the vector one, dynamically calculated cn

indeed provide quark-hadron duality (see [31]).
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for different lattice parameters (see the cited papers for details) and strictly
speaking they do not agree with each other at large distances. However
the qualitative agreement takes the place, and both sets of data reasonably
correspond to our simple expression (14).

Of separate interest is the short distance limit of our results. It is straight-
forward to expand (14) near z = 0, the answer is (see [32])

R(v)(z) =

[

ξz4 +
ξ

4
z6 log z2 + ...

]

+

+

[

1 +
1

3 · 27

(

6b− 6 − b2
)

z4 +
3b− 2 − b2

3 · 28
z6 log z2 + ...

]

(17)

The first and the second brackets in the r.h.s. of (17) correspond to the first
and the second terms in the r.h.s. of (14), respectively. The dots stay for
higher order terms.

For the sake of completeness let us also cite the standard OPE answer for
the discussed correlator (for the physical value Nc = 3) [5]:

R(v)(τ) = 1 +
αs(τ)

π
− 〈(gGa

µν)
2〉

3 · 27
τ 4 − 7π3

81
αs〈q̄q〉2 τ 6 log τ 2µ2

v + ... (18)

where τ is Euclidean time coinciding with xE in our case. We use the standard
values

〈(gGa
µν)

2〉 = 0.5GeV4 ; |〈q̄q〉| = (250MeV)3 (19)

It is worth noticing3 that the expression (18) contains a contact term 〈jµjν〉
which is not directly seen in the momentum space. This term’s contribution
is proportional to the sixth power of τ in (18), on the other hand, there is
no αs in front of it [22]. Numerically according to [22]

〈ūγµdd̄γ
µu〉/〈q̄q〉2 = −1

3
(0.90 ± 0.15)

We take this circumstance into account by means of numerical redefining µ2
v

in (18) accordingly, while still keeping the expression in the form (18). In
fact, our main concern is to compare (14) with the lattice, while we need
(18) mostly for illustrative purposes.

On Fig. 1.3 we compare the exact expression (14) with its own short
distance expansion (17) and also with the conventional OPE result (18) where

3The authors are indebted to Prof. K.G.Chetyrkin for discussion of this point.
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the three power terms have been kept in both cases. The Figure 1.3 shows
striking difference from the Figs. 1.1, 1.2. Sizeable deviations of the standard
OPE from (14) start as early as at x ≈ 0.4 Fm. We have also plotted the first
resonance contribution the answer should converge to at large distances. The
sum over resonances smoothly interpolates between small and large distance
regions.

3 Discussion of the results

We find the results of comparison of the lattice data and the model to be
quite remarkable. We present here the pattern in the vector channel only,
the other channels however demonstrate qualitatively similar situation (see
[32] for all details). It is worth stressing that we have worked with the model
of two relativistic quarks connected by the string with the tension σ, which
is the only dimensionful parameter of the model. Using this picture, first,
the lowest resonance masses were computed in all channels [12] and found
to be in reasonable agreement with their experimental values. Second, the
quasiclassical asymptotic for the mass spectrum was calculated [17] which
has the same pattern for all channels. The latter must provide exact quark-
hadron duality, which was explicitly shown in the vector case in [15, 30]. We
have plugged these two ingredients into the corresponding spectral density
and compared the results with the available lattice simulations [3, 4]. Another
comparison is made for the standard SVZ short distance OPE expansion and
the corresponding expansion provided by our spectral density. It is shown
that they strongly deviate from the full curve (and from the lattice data) for
the distances larger than 0.35 − 0.45 Fm, as one could expect.

The main lesson is that one needs quite a few inputs (correct lowest reso-
nance mass, correct lowest resonance residue and correct asymptotic behavior
dictated by quark-hadron duality) to reproduce lattice data in a reasonable
way. We have taken these inputs from the large Nc model of QCD string
with quarks at the ends [17]. The absence of precise quantitative agreement
between our results and the lattice should not disappoint since many effects
have been ignored (1/Nc effects, perturbative exchanges etc), notice also that
the two sets of lattice data we have used do not agree with each other on
quantitative level. On the other hand, qualitative agreement is rather good
and certainly better than that of the standard short distance OPE in coordi-
nate space. Notice that we have not performed any fitting of the lattice data,
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the latter was compared with the curves (14) and analogous expressions for
the other channels computed independently. If we had fitted the data with
these expressions, the agreement would have been much better.
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Figure captions

Fig. 1.1 Lattice data from [3] for the vector channel correlator vs expression
(14).

Fig. 1.2 Lattice data from [4] for the vector channel correlator vs expression
(14).

Fig. 1.3 Expression (14) (solid curve) together with its own short distance ex-
pansion (17) (dashed-dotted curve) and short distance OPE expansion
(20) (dashed curve). The lightest resonance contribution is also shown
(double dotted curve).

12



� ��� � � ��� � �
�	��
�

��� �

�

��� �

�
R � ��� (x)


� �	�����������

� ��� �   �� � !
"	#�$%

��� &

��� '

 �� !

 �� (

!
R ) *�+ (x)

$, -	.�/�0�1�2 3



� ��� � � ��� � �
�	��
	�

 �

 �

�

�

�
R � ��� (x)


	� �������������


