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Abstract

The BLM procedure is sequentially extended for any fixed order of
the perturbation QCD and the obtained reformed perturbation series
is equivalent to a continued fraction. A generalization of this pro-
cedure is developed which provides one with a certain mechanism of
the FAC prescription. This generalized BLM procedure is applied to
Adler function D in N3LO and partially in N4LO. The final effects of
2(3)–loop BLM improvement for D and Re+e− functions are discussed.

1 Introduction

The goal of the article is to extend the well-known Brodsky, Lepage and
Mackenzie (BLM) procedure [1] of scale setting for any order of pQCD. Let
me start with an appropriate citation: “...One, therefore, has to address the
question of what is the “best” choice for µ2 within a given scheme, usually
MS. There is no definite answer to this question – higher-order corrections
do not “fix” the scale, rather they render the theoretical predictions less
sensitive to its variation” (I. Hinchliffe, Particle Data Group booklet [2]). It

∗mikhs@thsun1.jinr.ru

1



will be shown that higher orders of pQCD in the MS–scheme unambiguously
determine the new scales in the BLM prescription sense in contrast to the
premonitory citation. Certainly, the effects of the coupling renormalization
encoded in β-function coefficients are absorbed into the set of the eigen-scales
µ2

i of the couplings ai = as(µ
2
i ) in any order of pQCD. To simplify the analysis

of the structure of radiation corrections the renormalization-scheme invariant
quantities like Adler function (D) and so on, see [6] for review, have been
considered here. The procedure of the absorbtion is constructed in Sec.2, 3
and includes as a partial case the “bubble approximation” elaborated in
[3, 4, 5]. The corresponding new perturbation series is obtained in Sec.3, so
that the initial BLM suggestion [1] appears to be completed by the sequential
BLM (sBLM) procedure. The construction of this sBLM is based on the
visible relation between the QCD β–function coefficients bi, bi ∼ bi+1

0 ; the
hierarchy of the contributions of coupling renormalization to the perturbation
coefficients at every order of as is based on this power law. This detailed
hierarchy requires a matrix representation for the perturbation expansion
(PE) rather than the standard series. The mentioned power relation works at
least up to the last known coefficient b3 (at Nf = 0÷5), instead of the usually
discussed proposition of the so-called “large–b0” limit (at −Nf � 1, in the
case, e.g. , b0 ∼ b1). Of course, the power law should be destroyed somewhere
in the higher orders of the PE when its expected factorial explosion starts.

Let me stress that the procedure can be formulated in terms of the dy-
namic characteristics only, the β–function coefficients, rather than in terms of
certain SU(3)c–Casimirs that may appear at an intermediate stage. There-
fore, I try to avoid using Nf powers in the consideration everywhere it is
possible. This β–function expansion is performed for the 4-loop D-function
(Appendix A), then the sBLM procedure is applied to this D-function in
Sec.4 to highlight the advantages and disadvantages of the procedure in the
case of this physical quantity.

The sBLM procedure may not be related to the improvement of the per-
turbation series. The next goal here is to supply the sBLM with the mecha-
nism a’la Fast Apparent Convergence (FAC) [10] to improve the convergence
of the series. This machinery, using the eigen-scales of the sBLM, is consid-
ered in Sec.4-5.
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2 BLM task, the first stage of generalization

Preliminary. Let us consider the formal perturbation series s(a) for the two-
point amplitudes at the external momentum Q2. The coupling a ≡ as(µ

2) =
αs(µ

2)/(4π) is normalized at the same external scale µ2 = Q2. In the case
the coefficients of the expansion dn are the numbers in the MS-like schemes,
due to the cancel of the logarithms ln(Q2/µ2) there. However, the constant
parts (ln(C)) of these log’s accompanied by the β-function coefficients are
left in dn and we shall manage just with these traces. For further convenience
we introduce a new scaled expansion parameter A = |b0|a,

s(a) = d0 +
∑

n=1

dnan ≡ S(A) = d0 +
d1

b0

·
∑

n=1

DnAn (1)

with D1 = 1,

and new coefficients Di =
di

d1b
i−1
0

that simplify intermediate calculations and

will help us maintain contact with the “large b0” limit, b0 � 1, A . 1.
Note that in the real world, below the c-quark threshold (at Nf = 3) we

have b0 = 9 � 1 and A(µ2) ≡ α(µ2)
b0

4π
≈ 0.32 < 1 for the NLO level at

µ2 = 1GeV2. The running of the coupling A → Ā(t) (or a → ā(t)) follows
the renormgroup (RG) equation

d

dt
Ā ≡ B(Ā) = −

(

Ā2 + c1Ā
3 + c2Ā

4 + . . .
)

; ci =
bi

bi+1
0

; (2)

where B(A)-the modified β-function and t = ln
(

Q2

Λ2

)

is a natural variable

for MS-like schemes.
The β-function structure of the perturbation coefficients. The

standard BLM is based on the evident structure of NLO coefficient d2 =
b0d2[1] + d2[0]; the first term appears due to one-loop a-renormalization. In
N2LO the a-renormalization appearing from one gluon line generates con-
tributions proportional to a3b2

0, a3b1, and from the next (this) gluon line
generates a contribution ∼ a3b0 at the background of the first (next) one,
correspondingly. The final representation for d3 looks like an expansion in
power series in b0, b1, . . .

d3 = d1

(

b2
0d3[2, 0] + b1d3[0, 1] + b0d3[1, 0] + d3[0]

)

, (3)
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where the first argument n0 of the expansion coefficients d3[n0, n1, . . .] corre-
sponds to the power of b0, and the second one n1 – to the power of b1, etc.

The coefficient dn[0] corresponds to the so–called [18] “genuine” corrections
with ni = 0 for the all possible bi powers. Moreover, if all the arguments of
the coefficient dn[. . . , m, 0, . . . , 0] on the right of m are 0, then we shall omit
these arguments for simplicity and write dn[. . . , m] hereinafter. In N3LO or-
der the a renormalization generates contributions ∼ a4b3

0, a4b0b1, a4b2 and
the contributions ∼ a4b2

0, a4b1, a4b0 from the mixing of renormalization of
a from the different sources and ∼ a4 for the “genuine” corrections. The d4

coefficient looks in this notation like

d4 = d1

(

b3
0d4[3] + b1b0d4[1, 1] + b2d4[0, 0, 1]+ (4)

b2
0d4[2] + b1d4[0, 1] + b0d4[1] + d4[0]

)

.

The same ordering of the β-function elements holds for all the next dn. It
is convenient for our purposes to present this “β-structure” for the “scaled”
variables Ā, Di; the Di coefficients have an evident form (presented up to
A5 order)

Ā1(t) D1 = 1;

Ā2(t) D2 = d2[1] +
1

b0
· d2 [0 ];

Ā3(t) D3 = d3[2] + c1d3[0, 1] +
1

b0
·

(

d3[1] +
1

b0
d3 [0 ]

)

;

Ā4(t) D4 = d4[3] + c1d4[1, 1] + c2d4[0, 0, 1] +

1

b0
·

(

d4[2] + c1d4[0, 1] +
1

b0
·

(

d4[1] +
1

b0
d4 [0 ]

))

;

Ā5(t) D5 = d5[4] + c1d5[2, 1] + c2

1
d5[0, 2] + c2d5[1, 0, 1]

+c3d5[0, 0, 0, 1]

+
1

b0
· (d5[3] + c1d5[1, 1] + c2d5[0, 0, 1]

+
1

b0
·

(

d5[2] + . . .
1

b0
· (. . .)

))

; (5)

where ci are defined in Eq.(2). Here we do not discuss how to derive this rep-
resentation for the known multi-loop results; we suggest that the elements of
the structure in Eq.(5) have already been obtained. The first column of the
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coefficients dn[n − 1] in Eq.(5) corresponds to the “bubble approximation”
that includes the contributions from the diagrams with the maximum num-
bers of the bubbles. However, there are other unsuppressed contributions in
every row of the “table” of Eq.(5). Really, the known ci ∼ 1 for QCD MS-
scheme ( at Nf = 3 ),

c1 ≈ 0.79; c2 ≈ 0.88; c3 ≈ 1.9; c4 =?; (6)

therefore, one has no reason to neglect the other terms, emphasized here in
the bold type. To extend our final results far more broadly, we shall suggest
the same estimates, ci ∼ 1, for the unknown required coefficients as well (see
the discussion in Introduction).

We face two different expansion parameters here, Ā for the lines and b−1
0

for the horizontal direction. To simplify the handling of these parameters,
it is convenient to invent the notation Āi · yij · b−j+1

0 for the corresponding
contributions and Di = yij · b−j+1

0 for their coefficients. The Y = ||yij|| is
a triangular matrix with the diagonal “genuine” terms ynn ≡ dn [0 ] that are
maximum suppressed by the b−1

0 powers in Dn, while the unsuppressed terms
(emphasized in bold type in Eq.(5)) are contained in the first column of the
matrix Y

y11 ≡ 1; (7)

y21 = d2[1]; (8)

y31 = d3[2] + c1d3[0, 1]; (9)

y41 = d4[3] + c1d4[1, 1] + c2d4[0, 0, 1]; (10)

. . . .

The yn1 originate from the renormalization of a single coupling/gluon line in
the skeleton diagram.

BLM scheme for n-loop. Let us find a new pair (t1, A(t1)) to vanish
all the “bold type” contributions yi1 and to accumulate them in the new
expansion parameter A(t1)

Ā(t) → Ā(t1) ≡ A1;

t − t1 ≡ ∆1 = ∆1,0 + A1 · ∆1,1 + A2
1 · ∆1,2 + . . . . (11)

Here the shift ∆1 of the t to the first intrinsic scale t1 is found in the form
of a perturbation series in A1 (that has first been suggested in [15]). The
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corresponding procedure consist in the re-expansion of Exp.(5) in the new
coupling A1 and rearrangement of the power series. Following the RG law
for the coupling Ā(t) = Ā(∆1, A1) and expanding it in ∆1 one obtains

Ā(t) = Ā(t − t1, A1) = A1 − B(A1)∆1 + B′(A1)B(A1)
∆2

1

2
+ . . . .

Substituting this expansion together with the expansion for ∆1 in Eq.(11)
into Exp.(5) one arrives at the rearranged series

Ā1D1 → Ā1
1 · 1;

Ā2D2 → Ā2
1 · D2 − 1∆1,0; (12)

Ā3D3 → Ā3
1 · D3 − 2∆1,0 · D2 − ∆1,0c1 + ∆2

1,0 − ∆1,1; (13)

Ā4D4 → Ā4
1 · D4 − 3∆1,0 · D3 +

(

3∆2
1,0 − 2c1∆1,0

)

D2 −

c2∆1,0 +
5

2
c1∆

2
1,0 − ∆3

1,0 +

(2∆1,0 − 2D2 − c1)∆1,1 − ∆1,2; (14)

An+1Dn+1 → An+1
1 · Dn+1 − n∆1,0 · Dn + . . . ,

The generalized BLM requires that the yi1 contributions should cancel for
every order Āi

1 in the set of Eqs. (12, 13, 14, . . . ). This requirement com-
pletely determines the partial “scales” ∆1,i from the set of equations; here we
write few important coefficients for the discussion, the first of them, Eq.(15),
corresponds to the standard BLM scale setting,

∆1,0 = y21 = d2[1]; (15)

∆1,1 = y31 − (y21)
2 − c1y21

= d3[2] − d2
2[1] + c1 (d3[0, 1] − d2[1]) ; (16)

∆1,2 = y41 − 3y31y21 − 2(y21)
3 − c1 · . . .

= d4[3] − 3d2[1]d3[2] + 2(d2[1])3 + c1 · . . . (17)

Note that NLO BLM correction in Eq.(16) cancels at the special conditions
d3[2] = (d2[1])2, d3[0, 1] = d2[1]. First of them corresponds to the geo-
metric progression for the leading log of the RG law, while the second one
corresponds to sub-leading log cancellation. If one applies these conditions
to ∆1,2 in Eq.(17), one obtains again the evident “geometric” condition,
d4[3] = (d2[1])3, for the cancel of the leading log part at the next step and so
on.
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In that way one can rearrange the first column yi1 into ∆1 step by step
for any fixed order of the PE. As the result of the procedure the initial series,
Eq.(5), can be reduced to the new one that contains only one unsuppressed
term Ā1 · 1, the first diagonal term in Eq.(18), all the other terms are sup-
pressed by the powers of b−1

0 ,

Ā1D1 → Ā1
1 · 1;

Ā2D2 → Ā2
1 · 0 +

y22

b0
;

Ā3D3 → Ā3
1 · 0 +

1

b0
(y32 − 2y21 y22) +

y33

b2
0

;

Ā4D4 → Ā4
1 · 0 +

1

b0

(

y42 − 3y21 y32 + y22[5y
2
21 − 2y31]

)

+

1

b2
0

(y43 − 3y21 y33) +
y44

b3
0

;

AnDn → An
1 · 0 +

1

b0
(yn2 − . . .) . . . . (18)

At this stage the matrix Y transforms into the new matrix Y (1), the first
column of which is now y

(1)
1i = δ1i and the other few elements are pre-

sented in Eq.(18). The first BLM stage result can be rewritten in the
form of the matrix representation,

∑

i>j Āi · yij · b−j+1
0 ≡ ĀA+Y B, where

A =
(

1, Ā, Ā2, . . .
)

,Ai =
(

1, Āi, Ā
2
i , . . .

)

, B =
(

1, b−1
0 , b−2

0 , . . .
)

,

Ā
(

A+Y B
)

n

1 stage
−→ Ā1

(

A+
1 Y (1)B

)

n
= Ā1

(

1 + Ā1(A
+
1 Y (1)B)n−1

)

.

The single unsuppressed (diagonal) term, 1, is extracted in the r.h.s. in
the parentheses, while the second term there is formed by the power b−1

0 –
suppressed minor of the matrix Y (1).

3 Sequential BLM procedure, next stages

Let us continue to put the matrix Y (1) into the diagonal form by reforming
its second column. Now we deal with its (Y (1))(n−1)-minor contained only the
b−1
0 –suppressed terms,

A1(A
+
1 Y (1)B)n = Ā1

(

1 + Ā1(A
+
1 Y (1)B)n−1

)

.
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The minor elements are presented in the rectangular on the right-hand side of
Table 1. The first power b−1

0 –suppressed terms of the minor are emphasized
in the bold type there. Repeating the same procedure as on the first stage
under the column y

(1)
i2 now, we rearrange again these terms into the new

expansion parameter A(t2) at the new “scale” t2 obtained from the t1

Ā(t1) → Ā(t2) ≡ A2;

t1 − t2 werearrangeagaina2,1 + A2
2 · ∆2,2 + . . . , (19)

The first equalities in Eqs. (15-17) remain valid also for the partial scales

∆2,m appearing from the y
(1)
i2 with the evident shifting of all the indices by

1. Therefore, using Eqs.(18) to determine y
(1)
i2 and taking the common factor

Table 1: The structure of Ā· Āi−1y
(1)
ij b1−j

0 contributions

A1D1 → Ā1· 1 1

A2D2 → Ā1· Ā1(t1) 0 +
d2[0]

b0
· 1

A3D3 → Ā1· Ā2(t1) 0 +
d2[0]

b0

ỹ
(1)
32

+
d3[0]

b2
0

A4D4 → Ā1· Ā3(t1) 0 +
d2[0]

b0
ỹ

(1)
42

+
1

b2
0

y
(1)
43 +

d4[0]

b3
0

A5D5 → Ā1· Ā4(t1) 0 +
d2[0]

b0
ỹ

(1)
52

+
1

b2
0

y
(1)
53 +

1

b3
0

y
(1)
54 +

d5[0]

b4
0

. . . . . . . . .

d2[0]

b0
to normalize the elements (ỹ

(1)
n2

= y
(1)
n2 /y22) one can obtain for ∆2,m,

∆2,0 = ỹ
(1)
32

=
y32

y22

− 2y21 =
d3[1]

d2[0]
− 2d2[1]; (20)

∆2,1 = ỹ
(1)
42

−
(

ỹ
(1)
32

)2

− c1ỹ
(1)
32

(21)

. . .
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So column by column the chain of transformations Y → Y (1) → Y (2) →
. . . → Y (n−1) leads to the diagonalization of Table 1. At every of these stages
one will obtain new coupling A(ti). The final result of this successive BLM
procedure reduces the initial perturbation series, Eq.(1), to the special one

S(A) = d0+

Ā(t1)

b0
· d1

{

1 +
Ā(t2)

b0
d2[0]

{

1 +
Ā(t3)

b0
d3[0] {1 + . . .}

}}

(22)

containing only the “genuine” coefficients di[0] accompanied by the corre-
sponding coupling at its eigen-scale ti, ti = t1 −∆1 − . . .−∆i. Moreover, the
series in powers ān(t) transforms to the series in products

∏n

i=1 ā(ti). Note
that Eq.(22) can be easily presented in the form a’la the continued fraction

S(A) = d0 +
ā1d1[0]

1 −
ā2d2[0]

1 + ā2d2[0] −
ā3d3[0]

1 + ā3d3[0] −
ā4d4[0]

. . . ,

(23)

where āi = ā(ti). Of course, the final results, Eq.(22) (or Eq.(23)), look rather
formal because the sBLM procedure constructed above disregards the per-
turbative applicability constraints for both the pairs (A(ti), ti) and the new
expansion coefficients di[0]. We meet this result with the N3LO calculation
of the D–function in Section 4.

4 NLO BLM procedure for the D function

The initial well-known series for D [11] can be rewritten by means of the
β-function coefficients

D = 3
∑

f

Q2
f

{

d0 + d1

[

a + d2a
2 + d3a

3 + d4a
4 + . . .

]}

,

d0 = 1; d1 = 3CF ;

d2 = b0 · d2[1] + d2[0];

d3 = b2
0 · d3[2] + b1 · d3[0, 1] + b0 · d3[1] + d3[0]; (24)

d4 = b3
0 · d4[3] + b0b1 · d4[1, 1] + b2 · d4[0, 0, 1] + b2

0 · d4[2] + . . .
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A separate problem is to put D into this form; it is solved in Appendix A
basing on the results obtained in [12] and on the partial results for d4 in [16].
Note that the expressions for the expansion elements in (24) remain valid for
the inclusion of light gluinos that contribute to the β-function. The explicit
expressions for d3[m, n] are presented in Appendix A; below they are written
numerically

d2 = b0 · 0.69 +
1

3
; (25)

d3 = b2
0 · 3.104 − b1 · 1.2 + b0 · 55.70

+

(

−573.96 − 19.83
(
∑

f Qf )
2

3(
∑

f Q2
f )

)

, (26)

We substitute the value b0(Nf = 3) = 9, b1(Nf = 3) = 64 in (26) for
illustration

d3 = 251.1 − 76.8 + 501.3 + (−573.96 − 0) ≈ 101.9, (27)

to compare the contributions from different sources. Further, we shall ap-
ply the sBLM procedure to D step by step to remove, respectively, b0-
contribution at N2LO; b2

0 and b1-contributions at N3LO and so on. The
results of sBLM will be analyzed at every step.

At the first standard step the BLM scale setting transforms the coeffi-
cients d2, d3 (compare with expressions (25-26)) and the coupling following

d2 → d̃2 = b0 · 0 +
1

3
(28)

d3 → d̃3 = b2
0

(

d3[2] + d3[0, 1]c1 − d2
2[1] − d2[1]c1

)

+b0(d3[1] − 2d2[0]d2[1]) + d3[0] (29)

= b2
0 ( 2.1555 − 1.0251 ) (30)

+b0( 55.70 − 0.46 ) + . . . ≈ 14.7 (31)

A(t) → A(t1); t − t1 = ∆1,0 = d2[1] ≈ 0.69 (32)

One makes sure that the value of b2
0 y31 approximately reduces twice at

the first step (at the same condition as for Eq.(27)) while the b0 y32 value
practically does not change, the amount of all the terms is reduced to 14.7 in
comparison with the initial value d3 ≈ 101.9 in Eq.(27). This strong cancel
effect as well as the other features of the BLM steps appear due to the large
and negative value of the genuine term d3[0].
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At the next step of the stage the modified ỹ31 term in Eq.(29) is trans-
ferred into ∆1 following Eqs.(15-16), respectively,

d̃3 →
˜̃
d3 = b2

0 · 0 + b1 · 0

+b0 · (d3[1] − 2d2[0]d2[1]) + d3[0] ≈ −77 (33)

A(t) → A(t1);

t − t1 = ∆1 = d2[1] +

+A(t1) ·
(

d3[2] + d3[0, 1]c1 − d2
2[1] − d2[1]c1

)

(34)

∆1 ≈ 0.69 + A(t1) · 1.13 (35)

The value of
˜̃
d3 ≈ −77 becomes noticeably larger in absolute value than

at the first step in Eq.(31), while the first perturbation correction to ∆1 in
Eq.(35) looks rather moderate and admissible. Here in Eq.(35) one can put
t1 ≈ t − d2[1] for the A argument rather than to solve Eq.(34) with respect
to t1. The contents of d4 in Eq.(4) also transforms following to Eq.(17).
Based on the results in [16], that lead to d4[3] ≈ 2.18, one can predict the
modification of the“bubble part” d4[3] of this coefficient,

d4[3] ≈ 2.18 → d4[3] − d3[2]d2[1] − 2d2[1](d3[2] − d2[1]2) ≈ −3.3

that is not also improved in itself. So one can conclude that though the next
step of sBLM is admissible due to the moderate size of correction to ∆1, it
does not improve the convergence of the perturbation series.

At last the second stage of the sBLM procedure for D,
1. is ruled out t2 from the pQCD domain because t1−t2 = ∆2,0 = d3[1]/d2[0]−
2d2[1] ≈ 166 (!);

2. does not lead to the decrease in the
˜̃
d3 term

˜̃
d3 →

˜̃̃
d3 = d3[0] ≈ −574

due to the large value of the genuine term; compare the contributions of the
different terms in Eq.(27).
Therefore, we would not perform the second stage at all and try another way
to optimize d̃3 after the first step. It is tempting not to remove the contribu-
tion y31 = d3[2] + c1d3[0, 1] completely, as we did at the second step above,
but rearrange its x–part, xy31, into the coupling renormalization and keep
the positive (1 − x)–part in the rest to compensate the large and negative
d3[0] contribution. This trick leads to the x-dependent BLM transformation
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(xBLM)

d̃3 → ˜̃d3 = b2
0 · (1 − x)(d3[2] + c1d3[0, 1])

+b0 · (d3[1] − 2d2[0]d2[1]) + d3[0],

t − t1 = ∆1 = d2[1] + A(t1) · (x(d3[2] + d3[0, 1]c1)

−d2
2[1] − d2[1]c1

)

. (36)

Let us set an “optimization” condition, say FAC,
˜̃
d3 = 0, to fix a certain

value of x. One makes sure that the perturbation corrections are improved

for both ˜̃d3 and ∆̃1 (see the 5-6th columns in Table 2) in comparison with
ones in Eq.(33, 35). The final result for D is reduced to

D = 3
∑

f

Q2
f

{

1 + 3CF

[

a(t̃1) +
1

3
a2(t̃1) + 0

]}

, (37)

where t − t̃1 = ∆̃1 are presented in Table 2.
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Table 2: the
˜̃
d3 = 0 and ˜̃r3 = 0 conditions

Nf b0(Nf ) x t − t̃1 = ∆̃1 ∆̃1(Q
2) x s − s̃1 = ∆̃1

3 9 0.56 d2[1] + a(t̃1)b0 · 0.18 1.84 d2[1] − a(s̃1)b0 · 3.1
(Q2 = 3GeV2)

4
25

3
˜̃
d3 = 0 0.24 d2[1] − a(t̃1)b0 · 0.45 0.58 ˜̃r3 = 0 2.56 d2[1] − a(s̃1)b0 · 3.7

(Q2 = 26GeV2)

5
23

3
−0.11 d2[1] − a(t̃1)b0 · 1.19 0.52 3.63 d2[1] − a(s̃1)b0 · 4.48
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It is instructive to apply a similar procedure also to the observable quan-
tity R(s) = σ(e+e− → h)/σ(e+e− → µ+µ−) associated with the D–function

R(s) = D(s) − d1
π2

3
· b2

0ā
3 = 3

∑

f

Q2
f

{

1 + 3CF

[

ā + r2ā
2 + r3ā

3
]}

,

where r1 = d1, r2 = d2, r3 = d3 − π2/3 · b2
0 see, e.g. , [11]. Large and nega-

tive π2-term arising due to the analytic continuation makes r3 also negative
(compare with Eq.(26)). As a result of the xBLM procedure r3 → r̃3, the
x-dependent term in r̃3 transforms to b2

0 · (1 − x)(d3[2] + c1d3[0, 1] − π2/3).

5 Generalized BLM procedure to improve the

perturbation series

To generalize the sBLM procedure in the way mentioned in Sec. 4, let us
introduce a lower triangular matrix X = ||xij||, xii ≡ 1 associated with the
matrix Y . The element xij is the part of the contribution yij, yij xij, that
should be involved into the coupling renormalization, while the remainder of
the contribution is yij x̄ij, where x̄ij ≡ 1− xij. The choice X = 1 returns us
to the initial series, while the choice xi1 = 1 corresponds to the first stage
of the sBLM; compare second column in Table 3 with the Eq.(18). These
additional free parameters xij, altogether n(n − 1)/2 parameters in NnLO
of PE, allow one to perform a “fine turning” of the coefficients of the initial
series. A more complicated structure of the final PE series is the price one
should pay for such an improvement of the convergence of the series. In the
case the “first stage coupling” has the form

Ā(t) → Ā(t1) ≡ A1; t − t1 ≡ ∆1 = ∆1,0(X) + A1 · ∆1,1(X) + . . . ,

∆1,0(X) = y21x21 (38)

∆1,1(X) = y31x31 − 2(y21x21)y21 +

+(y21x21)
2 − (y21x21)c1 (39)

At the second stage of the sBLM generalization the right corner of Table 3
is reformed with the coupling A2, see Table 4

Ā(t1) → Ā(t2) ≡ A2; (40)

t1 − t2 ≡ ∆2 = ∆2,0(X) + A1 · ∆2,1(X) + . . . ,

∆2,0(X) =
y32

y22

x32 − 2y21 x21

14



Table 3: the first stage of the xBLM procedure

Ā1D1 → Ā1· 1 + 0

Ā2D2 → Ā1· Ā1

1
y21x̄21 + Ā1

1

y22

b0

Ā3D3 → Ā1· Ā2

1
y31x̄31 + Ā2

1

y22

b0

(

y32

y22

− 2y21 x21

)

+ Ā2

1

y33

b2

0

ĀnDn → Ā1· Ān−1

1
yn1x̄n1 + . . .

Table 4: the second stage of the xBLM procedure

Ā1D1 → Ā1· 1 +0

Ā2D2 → Ā1· Ā1
1y21x̄21 + Ā1

2

y22

b0

Ā3D3 → Ā1· Ā2
1y31x̄31 + Ā2

2

y22

b0

(

y32 x̄32

y22

)

+ Ā2
2

y33

b2
0

ĀnDn → Ā1· Ān−1
1 yn1x̄n1 + . . .

(i) The FAC setting at A2 corresponds to the condition (Ā1)
2(y21x̄21 +

y22

b0
) =

0; (ii) If one restricts himself , say, the NLO BLM at A3 (see Table 4) then
one has 3 parameters, x21, x31, x32 to optimize the contributions A2D2 and
A3D3, respectively,

A2D2 → C2 = Ā1

[

Ā1y21x̄21 + Ā2
y22

b0

]

; (41)

A3D3 → C3 = Ā1

[

Ā2
1y31x̄31 + Ā2

2

y22

b0

(

y32 x̄32

y22

)

+ Ā2
2

y33

b2
0

]

; (42)

where Ā1 = Ā(t − ∆1), Ā2 = Ā(t − ∆1 − ∆2). (43)

The case discussed in Sec.4 in Table 2 corresponds to the partial solution of
the above equations at C3 = 0, A1 = A2 with x21 = 1, x31 = x, x32 = 0.
The set of solutions to Eqs.(41-43) at C2 = C3 = 0 (the FAC condition) with
respect to xij can be obtained and analyzed numerically.
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A Representation for the D-function

The required β-function coefficients with the MSSM light gluinos [12, 19],

b0 (Nf , Ng) =
11

3
CA −

4

3

(

TRNf +
NgCA

2

)

; (A.1)

b1 (Nf , Ng) =
34

3
C2

A −
20

3
CA

(

TRNf +
NgCA

2

)

(A.2)

−4

(

TRNfCF +
NgCA

2
CA

)

.

Adler function is known [12] for the MSSM light gluinos (Ng), D(a, Nf , Ng).
On the other hand, one can obtain the explicit functions Nf = Nf(b0, b1) and
Ng = Ng(b0, b1) solving the set of equations (A.1,A.2) with respect to the
variables Nf , Ng. Substituting this solution into D(a, Nf , Ng), one arrives
at the expansions, Eq.(A.3-A.7),

D(A) = 3
∑

f

Q2
f

{

d0 +
d1

b0

·
(

D1A + D2A
2 + D3A

3 + . . .
)

}

,

D1 = 1; D2 = d2[1] +
1

b0
d2[0];

D3 = d3[2] + c1 · d3[0, 1] +
1

b0
d3[1] +

1

b2
0

d3[0] (A.3)

The N2
f –terms of d4 have recently been calculated in [16], but this could not

been used in our approach. It is impossible to separate the terms b2d4[0, 0, 1]
and b0b1d4[1, 1] that are of an order of O(b3

0) from the b2
0–term, b2

0d4[2] that
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also contributes to the “N 2
f projection”.

d2[1] =
11

2
− 4ζ3 ≈ 0.691772;

d2[0] =
CA

3
−

CF

2
=

1

3
; (A.4)

d3[2] =
302

9
−

76

3
ζ3 ≈ 3.10345;

d3[0, 1] =
101

12
− 8ζ3 ≈ −1.19979; (A.5)

d3[1] = CA

(

3

4
+

80

3
ζ3 −

40

3
ζ5

)

−

−CF (18 + 52ζ3 − 80ζ5) ≈ 55.7005 (A.6)

d3[0] =
1

36
(523C2

A + 852CACF − 414C2
F ) − 72C2

Aζ3 +

+
5

24
(
176

3
− 128ζ3)

(
∑

f Qf)
2

3(
∑

f Q2
f)

≈ −573.9607 − 19.8326
(
∑

f Qf )
2

3(
∑

f Q2
f )

(A.7)
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