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Abstract

We sum up the next-to-leading logarithmic corrections to the heavy-
quarkonium hyperfine splitting using the nonrelativistic renormaliza-
tion group. On the basis of this result, we predict the mass of the ηb

meson to be M(ηb) = 9421 ± 11 (th) +9
−8 (δαs) MeV. The experimen-

tal measurement of M(ηb) with a few MeV error would be sufficient
to determine αs(MZ) with an accuracy of ±0.003. For the hyperfine
splitting in charmonium, the use of the nonrelativistic renormaliza-
tion group brings the perturbative prediction significantly closer to
the experimental figure.

The theoretical study of nonrelativistic heavy-quark-antiquark systems
is among the earliest applications of perturbative quantum chromodynamics
(QCD) [2] and has by now become a classical problem. Its applications to
bottomonium or toponium physics entirely rely on the first principles of QCD.
This makes heavy-quark-antiquark systems an ideal laboratory to determine
fundamental parameters of QCD, such as the strong-coupling constant αs
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and the heavy-quark masses mq. Besides its phenomenological importance,
the heavy-quarkonium system is also very interesting from the theoretical
point of view because it possesses a highly sophisticated multiscale dynamics
and its study demands the full power of the effective-field-theory approach.
The properties of the Υ mesons, the bottom quark-antiquark spin-one bound
states, are measured experimentally with great precision, and recent theoret-
ical analysis of the Υ family based on high-order perturbative calculations
resulted in determinations of the bottom-quark mass mb with unprecedent
accuracy [3, 4, 5].

In contrast to the Υ family, the current experimental situation with the
spin-zero ηb meson is rather uncertain: only one candidate event in γγ → ηb

production has been detected so far, which, however, is consistent with the
expected background [6]. Yet, the discovery of the ηb meson is one of the
primary goals of the CLEO-c research program [7]. An accurate prediction of
its mass M(ηb) is thus a big challenge and a test for the QCD theory of heavy
quarkonium. Moreover, the hyperfine splitting (HFS) of the bottomonium
ground state, Ehfs = M(Υ(1S))−M(ηb), is very sensitive to αs and, with the
advancement of the experimental measurements, could become a competitive
source for the determination of the strong coupling constant.

The HFS in quarkonium has been a subject of several theoretical re-
searches [8]. To our knowledge, the next-to-leading order (NLO) O(αs) cor-
rection is currently known in a closed analytical form only for the ground
state HFS [5]. In this Letter, we generalize this result to the excited states
and present the analytical renormalization-group-improved expression for the
heavy-quarkonium HFS in the next-to-leading logarithmic (NLL) approxima-
tion, which sums up all the corrections of the form αn

s lnn−1 αs. We apply it
to predict M(ηb). The result can be used for extracting αs(MZ) from future
experimental data on the ηb meson mass.

The leading-order (LO) result for the HFS is proportional to the fourth
power of αs, ELO

hfs = C4
F α4

s(µ)mq/(3n3), where CF = (N2
c − 1)/(2Nc), and

suffers from a strong dependence on the renormalization scale µ of αs(µ),
which essentially limits the numerical accuracy of the approximation. Thus,
the proper fixing of µ is mandatory for the HFS phenomenology. The scale
dependence of a finite-order result is canceled against the higher-order log-
arithmic contributions proportional to a power of ln(µ/µ̄), where µ̄ is a dy-
namical scale of the nonrelativistic bound-state problem. The physical choice
of the scale µ = µ̄ eliminates these potentially large logarithmic terms and a

priori minimizes the scale dependence. However, the dynamics of the non-
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relativistic bound state is characterized by three well separated scales: the
hard scale of the heavy-quark mass mq, the soft scale of the bound-state mo-
mentum vmq, and the ultrasoft scale of the bound-state energy v2mq, where
v ∝ αs is the velocity of the heavy quark inside the approximately Coulombic
bound state. To make the procedure of scale fixing self-consistent, one has to
resum to all orders the large logarithms of the scale ratios characteristic for
the nonrelativistic bound-state problem. The resummation of the logarithmic
corrections requires an appropriate conceptual framework. The effective field
theory [9] is now recognized as a powerful tool for the analysis of multiscale
systems, which is at the heart of the recent progress in the perturbative QCD
bound-state calculations. The main idea of this method is to decompose the
complicated multiscale problem into a sequence of simpler problems, each
involving a smaller number of scales. The logarithmic corrections originate
from logarithmic integrals over virtual momenta ranging between the scales
and reveal themselves as the singularities of the effective-theory couplings.
The renormalization of these singularities allows one to derive the equations
of the nonrelativistic renormalization group (NRG), which describe the run-
ning of the effective-theory couplings, i.e. their dependence on the effective-
theory cutoffs. The solution of these equations sums up the logarithms of
the scale ratios.

To derive the NRG equations necessary for the NLL analysis of the HFS,
we rely on the method based on the formulation of the nonrelativistic ef-
fective theory known as potential NRQCD (pNRQCD) [10]. The method
was developed in Ref. [11] where, in particular, the leading logarithmic (LL)
result for the HFS has been obtained (see also Ref. [12]). A characteristic
feature of the NRG is the correlation of the dynamical scales, which leads
to the correlation of the cutoffs [13]. For perturbative calculations within
the effective theory, dimensional regularization is used to handle the diver-
gences, and the formal expressions derived from the Feynman rules of the
effective theory are understood in the sense of the threshold expansion [14].
This approach [15, 16, 17, 18] possesses two crucial virtues: the absence of
additional regulator scales and the automatic matching of the contributions
from different scales.

Let us give a few details of the NLL analysis. We distinguish the soft,
potential, and ultrasoft anomalous dimensions corresponding to the ultra-
violet divergences of the soft, potential, and ultrasoft regions [14]. The LL
approximation is determined by the one-loop soft running of the effective
Fermi coupling cF and the spin-flip four-quark operator [11]. In the NLL
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approximation, all three types of running contribute. We need the two-loop
soft running of cF , which is known [19], and the two-loop soft running of the
spin-flip four-quark operator, which we compute by adopting the technique
used in Ref. [15] for the calculation of the two-loop 1/(mqr

2) non-Abelian po-
tential. To compute the potential running, we inspect all operators that lead
to spin-dependent ultraviolet divergences in the time-independent perturba-
tion theory contribution with one and two potential loops [20, 11]. They
include (i) the O(v2, αsv) operators [3, 8], (ii) the tree O(v4) operators, some
of which can be checked against the QED analysis [17], and (iii) the one-loop
O(αsv

3) operators, for which only the Abelian parts are known [17], while
the non-Abelian parts are new. In the NLL approximation, we need the LL
soft and ultrasoft running of the O(v2) and O(v4) operators, which enter the
two-loop time-independent perturbation theory diagrams, and the NLL soft
and ultrasoft running of the O(αsv) and O(αsv

3) operators, which contribute
at one loop. The running of the O(v2, αsv) operators is already known within
pNRQCD [11]. The running of the other operators is new. For some of them,
it can be obtained using reparameterization invariance [21].

Besides the running discussed above, we need the initial conditions for
the NRG evolution given by the known one-loop result [8]. With the anoma-
lous dimensions and initial conditions at hand, it is straightforward to solve
the system of the nonlinear differential equations for the effective couplings
and get the NLL result for the HFS. The corresponding expression for gen-
eral color (light-flavor) number Nc (nl) and for arbitrary principal quantum
number n is too lengthy to be shown in this Letter, so we present the explicit
analytical expression only for Nc = 3, nl = 4, and n = 1, which applies to
the bottomonium ground state. It reads

ENLL
hfs =

C4
Fα4

s(µ)mb
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where αs is renormalized in the MS scheme, y = αs(µ)/αs(mb), µ̄ = CFαs(µ)mb,

2F1(a, b; c; z) is the hypergeometric function, and 2F1(1, 1; 82/25;−1) = 0.7875078 . . ..
By expanding the resummed expression up to O(α2

s), we get

ENLL
hfs = ELO
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where αs ≡ αs(µ), µ = µ̄/n, CA = Nc, TF = 1/2, βi is the (i + 1)-loop
coefficient of the QCD β function (β0 = 11CA/3 − 4TF nl/3, . . .), Ln

αs

=
ln (CFαs/n), Ψn(x) = dn ln Γ(x)/dxn, Γ(x) is Euler’s Γ function, and γE =
0.577216 . . . is Euler’s constant. In Eq. (2), we keep the full dependence on
Nc, nl, and n. The O(α2

s ln2 αs) term is known [11, 12], while the O(α2
s ln αs)

term is new.
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For the numerical estimates, we adopt the following strategy. We take
mb = M (Υ(1S)) /2 which is sufficient at the order of interest. Furthermore,
we take αs(MZ) as an input and run with four-loop accuracy down to the
matching scale mb to ensure the best precision. Below the matching scale
the running of αs is used according to the logarithmic precision of the cal-
culation in order not to include next-to-next-to-leading logarithms in our
analysis. In Fig. 1, the HFS for the bottomonium ground state is plotted
as a function of µ in the LO, NLO, LL, and NLL approximations. As we
see, the LL curve shows a weaker scale dependence compared to the LO one.
The scale dependence of the NLO and NLL expressions is further reduced,
and, moreover, the NLL approximation remains stable up to smaller scales
than the fixed-order calculation. At the scale µ′ ≈ 1.3 GeV, which is close
to the inverse Bohr radius, the NLL correction vanishes. Furthermore, at
µ′′ ≈ 1.5 GeV, where αLL

s = 0.319, the result becomes independent of µ; i.e.,
the NLL curve shows a local maximum. This suggests a nice convergence of
the logarithmic expansion despite the presence of the ultrasoft contribution
with αs normalized at the rather low scale µ̄2/mb ∼ 0.8 GeV. By taking the
difference of the NLL and LL results at the local maxima as a conservative
estimate of the error due to uncalculated higher-order contributions, we get
Ehfs = 39 ± 8 MeV. A similar error estimate is obtained by the variation of
the normalization scale in the physically motivated soft region 1 − 3 GeV.

So far, we have only discussed the perturbative contributions to the
HFS. The nonperturbative ones are in general given by the convolution of a
quantum-mechanical Green function with a non-local nonperturbative glu-
onic correlator [22]. In the limit α2

smq � ΛQCD, it can be investigated by the
method of vacuum condensate expansion [23]. The resulting series, however,
is not expected to converge well in our case and suffers from large numerical
uncertainties [24]. In any case, within the power counting assumed in this
paper, these non-perturbative effects are beyond the accuracy of our com-
putation and should be added to the errors. One way to estimate them is
by considering the HFS in the charmonium system, where experimental data
are available. The result of our analysis is given in Fig. 2 along with the
experimental value 117.7 ± 1.3 MeV [25]. The local maximum of the NLL
curve corresponds to Ehfs = 104 MeV and αLL

s = 0.534. We should empha-
size the crucial role of the resummation to bring the perturbative prediction
closer to the experimental figure. Note also that the recent lattice estimates
undershoot the experimental value by 20 − 30% [26]. For an estimate, we
attribute the whole difference of ≈ 14 MeV to the nonperturbative effects.
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Figure 1: HFS of 1S bottomonium as a function of the renormalization scale
µ in the LO (dotted line), NLO (dashed line), LL (dot-dashed line), and NLL
(solid line) approximations. For the NLL result, the band reflects the errors
due to αs(MZ) = 0.118 ± 0.003.
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Taking into account that they are suppressed by the inverse heavy-quark
mass at least as 1/(αsmq)

2 [23], we obtain ≈ 3.5 MeV for the typical size
of the nonperturbative contribution to the HFS in bottomonium. For the
estimate of the nonperturbative error, we multiply this number by two. We
may also apply our formulae to the n = 2 excited states. For bottomonium,
a recent study of unquenched nonrelativistic lattice QCD [27] predicts the
ratio Ehfs(2S)/Ehfs(1S) = 0.32 ± 0.07, which is in good agreement with the
value 0.25 obtained using our NLL result. For charmonium, our perturba-
tive estimate Ehfs(2S)/Ehfs(1S) = 0.37 also reasonably agrees with the result
0.41± 0.03 of the recent experimental measurements [28]. Although one def-
initely cannot rely on the (even NRG-improved) perturbative analysis of the
excited charmonium states, the above agreement suggests that the nonper-
turbative effects are small, at least for the ground state. This conclusion
is also supported by the heavy-quarkonium spectrum analysis reported in
Ref. [4].

Our prediction for the bottomonium HFS can be compared with those
obtained either in lattice [29] or with potential models (for a recent discussion
see Ref. [30] and references therein). It seems to be a general trend that our
result is larger than the lattice predictions and smaller than most of the
potential model results.

To conclude, we have computed the heavy-quarkonium HFS in the NLL
approximation by summing up the subleading logarithms of αs to all orders
in the perturbative expansion. The use of the NRG extends the range of µ
where the perturbative result is stable to the physical scale of the inverse
Bohr radius. We found the resummation of logarithms to be crucial to bring
the perturbative prediction closer to the experimental figure of the HFS in
charmonium despite a priori unsuppressed nonperturbative effects. Our re-
sults further indicate that the properties of the physical charmonium and
bottomonium ground states are dictated by perturbative dynamics. As an
application of the result to the bottomonium spectrum, we predict the mass
of the as-yet undiscovered ηb meson to be

M(ηb) = 9421 ± 11 (th) +9
−8 (δαs) MeV , (3)

where the errors due to the high-order perturbative corrections and the non-
perturbative effects are added up in quadrature in “th”, whereas “δαs” stands
for the uncertainty in αs(MZ) = 0.118 ± 0.003. If the experimental error in
future measurements of M(ηb) will not exceed a few MeV, the bottomonium
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Figure 2: HFS of 1S charmonium as a function of the renormalization scale µ
in the LO (dotted line), NLO (dashed line), LL (dot-dashed line), and NLL
(solid line) approximations. For the NLL result, the band reflects the errors
due to αs(MZ) = 0.118± 0.003. The horizontal band gives the experimental
value 117.7 ± 1.3 MeV [25].
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HFS will become a competitive source of αs(MZ) with an estimated accuracy
of ±0.003, as can be seen from Fig. 1.
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