
Feynman rules for effective Regge

action

April 29, 2005

Abstract

Starting from the gauge invariant effective action derived in the
quasi-multi-Regge kinematics (QMRK), we obtain the effective reggeized
gluon (R) – particle (P) vertices of the following types: RP , RPP ,
RRP , RRPP , RPPP , RRPPP , where on-mass-shell particles are
the gluons, or sets of gluons with small invariant masses. The explicit
expressions satisfying the Bose-symmetry and gauge invariance condi-
tions are obtained. As a comment to Feynman rules for writing down
the amplitudes in terms of effective vertices we present a kind of a
“vocabulary” for practitioners.

1 Introduction

The behavior of total cross sections of QCD processes at high energy and,
as a consequence, the problem of unitarization of the BFKL Pomeron are
important directions of investigations in phenomenology of strong interac-
tions. In the leading logarithmic approximation, the BFKL equation gives
the power-law rise of cross sections with energy that obviously violates the
Froissart bound [1]. The next-to-leading corrections to the BFKL kernel are
large enough and must be taken into account even at presently accessible
energies [2]. The straightforward calculation of corrections to the Pomeron
intercept which have been performed in a series of the ten-years old papers
by L.N. Lipatov and V.S. Fadin [3] is rather cumbersome and not convenient
for numerical analysis.
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The motivation of this work is necessity for developing a proper mathe-
matical apparatus for calculation of the next-to-leading corrections to Feyn-
man inelastic amplitudes of peripherical processes. It is convenient and phys-
ically well-motivated to perform the systematic self-consistent study of non-
leading contributions to the BFKL Pomeron intercept within the framework
of an effective theory describing the interactions of reggeized gluons with el-
ementary particles (quarks and gluons). In the papers [4], such an effective
action approach for inelastic high-energy scattering in QCD was proposed
and developed. In the work by L.N. Lipatov of 1995, this approach was gen-
eralized to the processes with arbitrary number of produced particles sepa-
rated into several groups by rapidity satisfying the multi-Regge kinematics
conditions. As a result, the non-Abelian gauge invariant effective action for
quasi-multi-Regge kinematics (QMRK) processes was derived [5]. This ac-
tion allows to take into account arbitrary number of produced particles and
contains the fields of two sorts: the reggeized gluons in the t-channel, and the
ordinary gluons and quarks in the production channel. Several examples of
the corresponding effective vertices were further calculated by L.N. Lipatov,
V.S. Fadin et al. [6, 7], and A. Leonidov and D. Ostrovsky [8]. The string
theory motivated approach to study of effective vertices was developed in
Refs. [9].

In the present work, we reproduce these results within the unified frame-
work of the gauge invariant effective action. There is a hope that building
and application of the set of such rules derived form the effective action can
provide significant simplification of evaluation of differential cross sections
related to creation of several particle clusters separated by rapidity gaps.
We concentrate our attempts on presentation of the results in the form most
convenient for use in numerical simulations for phenomenological applica-
tions.

The processes of such a kind can be investigated, e.g., in experiments
at RHIC and LHC. Another important branch of possible applications—
calculation of peripherical amplitudes with several reggeized gluon states in
the scattering channel—is out of scope of the present paper and will not be
considered here.

The structure of the paper is following: In the Section 2, we fix the nota-
tions and give an elementary “vocabulary” of terms and kinematic relations
that are used in the work. In the next Section, a number of Reggeon-Particle
vertices is derived systematically within the effective gauge invariant action
approach and presented in an explicit analytical form.
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2 Vocabulary

Let us give a “vocabulary” which is used throughout the present work. We
consider the parton-parton collision at high energy in the center-of-mass sys-
tem. The main contribution to the total cross section stems from the QMRK
of final state particles (see Fig.1). In this regime, the final state particles com-
pose several groups with arbitrary number of gluons, or quarks with fixed
masses si, which are produced in the Regge kinematics to esch other:

s = 2PAPB = 4E2 � si = 2pi−1pi � |ti| = |q2

i | . (1)

Also, we introduced the light-cone vectors

n+ =
PB

E
, n− =

PA

E
, n+n− = 2 , (n±)2 = 0 (2)

and thus the light-cone projections of momenta and derivatives read, respec-
tively

k± = (nµ)± · kµ , ∂± = (nµ)± · ∂µ . (3)

We imply also that in the derivatives act on the particle v(p) and reggeon
A(p) fields in the momentum representation as:

∂±v(p) = −ip±v(p) ,
1

∂±

v(p) =
i

p±
v(p) , ∂2

σA(q) = −q2A(q) . (4)

Besides this, we define two transferred momentum 4-vectors:

q1 = PA − PA′ , q2 = PB − PB′ (5)

and their Sudakov decompositions

q1 = q1⊥ +
q+

1

2
n− , q2 = q2⊥ +

q−2
2

n+ , q−1 = q+

2 = 0 . (6)

The Sudakov variables for produced particles are:

pi =
p+

i

2
n− +

p−i
2

n+ + pi⊥ . (7)

In the fragmentation region, one has

PA → p1 + p2 + ... + pn + q1 : P+

A =

n
∑

i=1

p+

i , |q+

1 | � p+

i , (8)
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PB → p1 + p2 + ... + pn + q2 : P−
B =

n
∑

i=1

p−i , |q+

2 | � p−i . (9)

Deriving the expressions for the vertices, we assume that all the 4-momenta of
particles and reggeons in each vertex are incoming and obey the conservation
law

∑

i

pi = 0 ,
∑

i

p±i = 0 . (10)

To every reggeized gluon line (existing only in the scattering channel),
one should attribute the sign (+) to its end attached to the initial parton
with the momentum PA, and the sign (−) to the end attached to one with the
momentum PB. Throughout this paper, we use the notation a± = (a · n±).
Note, that the horizontal lines at the Fig. 1 represent the reggeons, or parti-
cles, which are off-mass-shell. Initial, final and produced particles (presented
by no-horizontal lines at the Fig. 1) are the on-mass-shell particles, which
we will suggest, as a rule, to be massless. Let us emphasize that the presence
of reggeon lines within any production block is forbidden in the QMRK due
to the rapidity gap, Eq. (1).

The effective action approach can be formulated in terms of the physical
particles (quarks and gluons) and the reggeized gluons. It is convenient to
write down the effective action in the following form:

S =

∫

dx [LY M + Lind] , (11)

where the standard Yang-Mills part consists of the gluon-gluon interactions

LY M = −
1

4

(

∂µva
ν − ∂νv

a
µ

)

+
g

2
fabc (∂µva

ν) vb
µvc

ν −
g2

4
flbcfldev

b
µvc

νv
d
µve

ν , (12)

and the induced part contains gluon-reggeon couplings:

Lind(v±, A±) = −

∫

dx Tr

{

[

v+ − gv+

1

∂+

v+

+g2v+

1

∂+

v+

1

∂+

v+ − ... − A+

]

· ∂2

σA−

+ [v+, ∂+, A± → v−, ∂−, A∓]

}

, (13)
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with v± ≡ T a (n±)
µ
va

µ are the particle (ordinary gluon) fields, and A± ≡
T a (n±)

µ
Aa

µ—the reggeized gluon fields. For the hermitian color generators
T a, we use

[

T a, T b
]

= if abcT c , Tr
(

T aT b
)

=
1

2
δab . (14)

3 Vertices

3.1 Standard QCD Feynman rules

The Yang-Mills interaction part of the effective action yields the standard
QCD Feynman rules (see Fig. 2a-c):

3g-vertex : gf abc [(p1 − p2)λgµν + (p2 − p3)µgνλ

+(p3 − p1)νgλµ] , (15)

4g-vertex : ig2 [fablfcdl(gµσgνλ − gµλgνσ)

+faclfdbl(gµνgλσ − gµσgλν)

+fadlfbcl(gµλgσν − gµνgσλ)] , (16)

gluon propagator: −iδab gµν

k2
. (17)

3.2 Induced vertices

Induced part of the action takes into account emission in the fragmentation
region of initial particles. The simplest particle-reggeon (PR) vertex in the
momentum space is defined as (see Fig. 3a)

i〈0| LPR
ind |va

ν(q)A
b
±〉 = V±

ab
ν (q) ,

LPR
ind = −Tr

(

v+∂2

σA− + v−∂2

σA+

)

, (18)

and is given by
V±

ab
ν (q) = iδabq2

(

n±
)

ν
. (19)

One can easily check fulfillment of the gauge invariance condition for this
vertex:

qν
2 · V+

ab
ν (q2) = 0 , qν

1 · V−
ab
ν (q1) = 0 . (20)
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The induced vertices of the PPR type read

V abd
+ µν

=
〈

0
∣

∣

∣
− igTr

[

v+

1

∂+

v+ ∂2

σA−

]

∣

∣

∣
va

µ(PA)vb
ν(PA′)Ad

+(q1)
〉

= gf abd q2
1

P+

A

(

n+
)

µ

(

n+
)

ν
, (21)

V abd
− µν

=
〈

0
∣

∣

∣
− igTr

[

v−
1

∂−

v−∂2

σA+

]

∣

∣

∣
va

µ(PB)vb
ν(PB′)Ad

−(q1)
〉

= gf abd q2
2

P−
B

(

n−
)

µ

(

n−
)

ν
, (22)

where we imply that
P+

A = P+

A′ , P−
B = P−

B′ .

The induced vertices of higher orders will be specified below.

3.3 Effective PPR vertices

Knowledge of the induced and ordinary 3-vertices allows to build the effective
3-vertices which obey the Bose- and gauge-symmetries. We distinguish four
types of the PPR vertices. First group consists of the margin type vertices:
q1 = PA − PA′ , q2 = PB′ − PB.

• “Left” margin type (see Fig. 3b):

γνν′+

‖ (PA, a; PA′, b; q1, c) = gf abc Γνν′+

‖ (PA, PA′) , (23)

Γνν′+

‖ (PA, PA′) = 2P +

A gνν′

+
(

n+
)ν

(−2PA + PA′)ν′

+
(

n+
)ν′

(−2PA′ + PA)ν −
q2
1

P+

A

(

n+
)ν (

n+
)ν′

. (24)

One can check that the condition of gauge invariance is explicitly sat-
isfied:

Γνν′+

‖ · (PA′)ν′ = P ν
AP+

A , (25)

Γνν′+

‖ · (PA)ν = P ν′

A′P
+

A − P 2

A′

(

n+
)ν′

. (26)
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For on-mass-shell particle A: P 2
A = 0 with the gauge condition (e(PA) · PA) =

0 we have
Γνν′+

‖ · (PA′)ν′ · eν (PA) = 0 . (27)

• “Right” margin type (see Fig. 3c):

γνν′−
‖ (PB, a; PB′, b; q2, c) = gf abc Γνν′−

‖ (PB, PB′) ,

Γνν′−
‖ (PB, PB′) = 2P−

B gνν′

−
(

n−
)ν′

(2PB′ − PB)ν

−
(

n−
)ν

(2PB − PB′)ν′

−
q2
2

P−
B

(

n−
)ν (

n−
)ν′

. (28)

In this case, the gauge-invariance tests read:

Γνν′−
‖ · (PB′)ν′ = −P ν

BP−
B , (29)

Γνν′−
‖ · (PB)ν = −P ν′

B′P
−
B + P 2

B′

(

n−
)ν′

. (30)

The other group includes the effective vertices of the central type: k =
q1 + q2 , q2

1,2 6= 0.

• “Left” central type (see Fig. 3d):

γνν′+

⊥ (q1, a; k, b; q2, c) = −gf abc Γνν′+

⊥ (q1, q2) ,

Γνν′+

⊥ (q1, q2) = 2q+

1 gνν′

−
(

n+
)ν

(q1 − q2)
ν′

−
(

n+
)ν′

(q1 + 2q2)
ν −

q2
2

q+

1

(

n+
)ν (

n+
)ν′

. (31)

The corresponding Ward identities read:

Γνν′+

⊥ · kν′ = q+

1 qν
1 − q2

1

(

n+
)ν

, (32)

Γνν′+

⊥ · (q1)ν = q+

1 kν′

− k2
(

ν+
)ν′

. (33)
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• “Right” central type (see Fig. 3e):

γνν′−
⊥ (q1, a; k, b; q2, c) = −gf abc Γνν′−

⊥ (q1, q2) ,

Γνν′−
⊥ (q1, q2) = 2q−2 gνν′

+
(

n−
)ν

(q1 − q2)
ν′

+
(

n−
)ν′

(−q2 − 2q1)
ν −

q2
1

q−2

(

n−
)ν (

n−
)ν′

, (34)

for which one has

Gνν′−
⊥ · kν′ = q−2 qν

2 −
(

n−
)ν

q2

2 , (35)

Gνν′−
⊥ · (q2)ν = q−2 kν′

− k2
(

n−
)ν′

. (36)

3.4 Effective PRR vertex

Production of a single gluon with momentum kµ = (q1 + q2)µ and color index
b in the “two reggeons collision” in color-momentum states, respectively,
(q1, a; q2 , c), is described by the PRR vertex (see Fig. 3f)

Γµ+− (q1, a; q2, c; k, b) = gf abc Cµ(q1, q2) ,

Cµ = 2

[

(

n−
)µ

(

q+

1 +
q2
1

q−2

)

−
(

n+
)µ

(

q−2 +
q2
2

q+

1

)

+ (q2 − q1)
µ

]

. (37)

The 4-vector Cµ obeys the gauge condition kµ · Cµ = 0.

3.5 Effective RRPP vertices

We consider first the case when pair of gluons in color-momenta states
(p1 , µ , a; p2 , ν , b) are created in collision of two reggeons with color-
momenta states (q1 , c; q2 , d) with the momentum conservation relation
q1 + q2 = p1 + p2. It can be build in terms of the effective 3-vertices given
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above (see Fig. 4) It has the form

1

ig2
V

µν−+

abcd (q1, q2; p1, p2) =

=
T1

k2
Cη (q1, q2) γµνη (−p1,−p2, k)

−
T3

(p2 − q2)
2
Γηµ− (q1, p1 − q1) Γην+ (p2 − q2, q2)

+
T2

(p1 − q2)2
Γην− (q1, p2 − q1) Γηµ+ (p1 − q2, q2)

− T1

[(

n−
)µ (

n+
)ν

−
(

n−
)ν (

n+
)µ]

− T2

[

2gµν −
(

n−
)µ (

n+
)ν]

− T3

[(

n−
)ν (

n+
)µ

− 2gµν

]

− 2q2

2

(

n+
)µ (

n+
)ν

(

T3

p+

2 q+

1

−
T2

p+

1 q+

1

)

− 2q2

1(n
−)µ(n−)ν

(

T3

p−1 q−2
−

T2

p−2 q−2

)

, (38)

with T1 = fabkfcdk , T2 = fbckfadk , T3 = fcakfbdk , related as T1 +T2 +T3 = 0
by virtue of the Jacobi identity. The last two terms in the Eq. (38) are the
induced ones derived directly from the corresponding part of the effective
action, Eq. (13). The ordinary QCD 3-gluon vertex reads

γµνη (−p1,−p2, k) = gµν(p2 − p1)η + gνη(−2p2 − p1)µ + gηµ (2p1 + p2)ν .

One can verify the gauge and Bose-symmetry fulfillment:

V
µν−+

abcd (q1, q2; p1, p2) p1µ = 0 , (39)

V
µν−+

abcd (q1, q2; p1, p2) = V
νµ−+

bacd (q1, q2; p2, p1) . (40)

3.6 Effective PPPR vertices

Let us consider now the margin PPPR vertices. The effective PPPR vertex
can be constructed in terms of combination of previously calculated effective
vertices, and ordinary 3-vertices (see Figs. 5,6).

For the vertex describing the A-particle fragmentation region to two glu-

9



ons and a reggeon PA → g1 (p1) + g2 (p2) + R (q1) (see Fig. 3), one has

1

ig2
V

ν1ν2ρ+

abcd (p1, p2, PA, q1) =

=
T1

k2
γσν1ν2(k,−p1,−p2)Γ

ρσ+

‖ (PA, k)−

−
T3

(p2 + q1)2
γρν1σ(PA,−p1,−p2 − q1)Γ

σν2+

⊥ (p2 + q1, p2)−

−
T2

(p1 + q1)
2
γρν2σ(PA,−p2,−p1 − q1)Γ

σν1+

⊥ (p1 + q1, p1)+

+ T3

[

pν2

1

(

n+
)ρ

− p+

1 gρν2
]

− T2

[

pν2

1

(

n+
)ρ

− p
ρ
1

(

n+
)ν2

]

+

+ T1

[

p+

1 gρν2 −
(

n+
)ν2

p
ρ
1

]

+

+ q2

1(n
+)ν1

(

n+
)ν2

(n+)ρ

(

T2

p+

2 p+

1

+
T1

P+

A p+

2

)

. (41)

One can be convinced in the fulfillment of a gauge condition (here we use
the following relation p+

1,2 � q+

1 , p+

1 + p+

2 = P+

A ):

V
ν1ν2ρ+

abcd (p1, p2, PA, q1) · (p1)ν1
= 0 , (42)

as well as the Bose-symmetry condition.
Similarly, we find for the relevant vertex, describing the decay PB →

g1 (p1) + g2 (p2) + R (q2):

1

g2
V

ν1ν2ρ−
abcd (p1, p2, PB, q2) =

= −
T1

k2
γσν1ν2(k,−p1,−p2)Γ

σρ−
‖ (PB, k)+

+
T3

(p2 + q2)2
γσν1ρ(−q2 − p2,−p1, PB)Γσν2−

⊥ (p2 + q2, p2)−

−
T2

(p1 + q2)2
γν2ρσ(−p2, PB,−p1 − q2)Γ

ν1σ−
⊥ (p1, q2 + p1)+

+ T1[(n
−)ν1gρν2 − (n−)ν2gρν1]+

+ T3

[

gν1ν2(n−)ρ − (n−)ν1gρν2
]

+ T2

[(

n−
)ν2

gρν1 −
(

n−
)ρ

gν1ν2
]

+

q2

2

(

n−
)ν1

(

n−
)ν2

(

n−
)ρ

[

T2

p−2 p−1
+

T1

P−
B p−2

]

. (43)
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Again, the gauge condition is fulfilled (provided that p−
1,2 � q−2 , p−1 + p−2 =

P−
B ):

V
ν1ν2ρ−
abcd (p1, p2, PB, q2) · (p1)ν1

= 0 . (44)

3.7 Effective RRPPP , and RPPPP vertices

These vertices can be constructed by means of combinations of the already
known effective vertices given above, Eqs. (15,16,17,19,31,34) . The result
is graphically presented at the Figs. 7-9. Corresponding explicit analytical
expressions appear to be rather cumbersome; moreover, a problem of verifica-
tion of the gauge invariance arises. The accurate derivation of these vertices
requires additional work and will be considered separately.

4 Discussions and Conclusions

The main formulas presented in this work were derived first in Refs. [3, 5,
6, 7], and thus our paper is mostly a compilation, on the one hand. Besides
this, we did not consider here the possible fermion contributions and helicity
amplitudes. On the other hand, the primary purpose of our investigation is to
give a systematic self-consistent approach to derivation of the Feynman rules
from the effective reggeon-particle action, and, what is essential, to present
the results in a most convenient form for numerical simulations. We hope
that our results will provide a practical help in writing relevant computer
codes for phenomenological needs.

Indeed, we see that all the RRP n and P nR effective vertices can be
constructed in terms of the effective vertices of lower orders PR, PR, RPP

supplied with the ordinary QCD vertices. Unfortunately, the corresponding
explicit expressions for them appear to be very complicated. For instance,
the RRPPP vertex contains 22 terms but for the induced ones. In the paper
by one of us [5], the recurrence relation was derived for induced vertices that
allows one, in principle, to build vertices of higher orders provided that the
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lower ones are known. For the margin RP n case, this relation reads:

∆ν0ν1...νr+

a0a1...ar

(

P+

A , k+

1 , ..., k+

r

)

=

=
(n+)

νr

k+
r

r−1
∑

i=0

faa2ai×

× ∆ν0ν1...νr−1+

a0a1...ai−1aai+1...ar−1

(

P+

A , k+

1 , ..., k+

i−1
, k+

i + k+

r , k+

i+1
, ..., k+

r−1

)

, (45)

P+

A +
∑

k+

i = 0 ,

with

∆ν0ν1+

a0a1c = −f ca1a0
q2
1

k+

1

(

n+
)ν0

(

n+
)ν1

, P+

A + k+

1 = 0 . (46)

The similar expression holds for ∆ν0ν1...νr−
a0a1...ar

(

P−
B , k−

1 , ..., k−
r

)

. The Bose-symmetry
is obviously satisfied.

For induced vertices in the central region—RRP n—one has:

Γν1...νn+−
d1...dnc2c1

= ∆+ν1...νn−
c1d1...dnc2

(

k+

0 , ..., k+

n

)

+ ∆+ν1...νn−
c2d1...dnc1

(

k−
0 , ..., k−

n

)

, (47)

where
∆+ν1...νn−

c1d1...dnc2
=

(

n+
)

ν0
· ∆ν0ν1...νn−

c1d1...dnc2
,

and
n

∑

0

k+

i =

n
∑

0

k−
i = 0 .
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