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Abstract

The Adler sum rule for deep inelastic neutrino scattering mea-

sures the isospin of the nucleon, and is hence exact. In contrast the

Gottfried sum rule for charged lepton scattering does receive pertur-

bative and non-perturbative corrections. We show that at two-loop

level the Gottfried sum rule is suppressed by a factor 1/N 2
c relative

to higher moments, and we conjecture that this suppression holds to

all-orders, and also for higher-twist effects. It is further noted that

the differences between radiative corrections for higher moments of

neutrino and charged lepton deep inelastic scattering, are 1/N 2
c sup-

pressed at two-loops, and this is also conjectured to hold to all-orders.

The 1/N 2
c suppression of perturbative corrections to the Gottfried sum
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rule makes it plausible that the deviations from the parton model value

are dominated by a light quark flavour asymmetry in the nucleon sea.

This asymmetry indeed persists as Nc → ∞ as predicted in a chiral-

soliton model.

In this talk we describe the results of recent work of Ref. [1], in which
we are led to a conjecture concerning the radiative QCD corrections (both
perturbative and higher-twist) to non-singlet neutrino nucleon and charged
nucleon Deep Inelastic Scattering (DIS). Let us begin by considering the
isospin Adler sum rule, which is the first non-singlet moment for neutrino
DIS. This has the parton model expression

IA ≡
∫ 1

0

dx

x

[

F νp
2 (x, Q2) − F νn

2 (x, Q2)
]

= 2
∫ 1

0
dx
(

u(x) − d(x) − ū(x) + d̄(x)
)

= 4I3 = 2 . (1)

Since isospin is conserved this sum rule has the special feauture that it is
exact, and receives no perturbative or non-perturbative QCD corrections.
This expectation of IA = 2 is consistent with existing neutrino-nucleon DIS
[2], which show no significant Q2 variation in the range 2GeV2 ≤ Q2 ≤
30GeV2 and give

Iexp
A = 2.02 ± 0.40 . (2)

The corresponding sum rule for charged-lepton-nucleon DIS has the form

IG(Q2) =
∫ 1

0

dx

x

[

F lp
2 (x, Q2) − F ln

2 (x, Q2)
]

=
1

3

∫ 1

0
dx
(

u(x) − d(x) + ū(x) − d̄(x)
)

=
1

3
−

2

3

∫ 1

0
dx
(

d̄(x) − ū(x)
)

. (3)

If the nucleon sea were flavour symmetric with ū(x) = d̄(x) then one has the
valence contribution to the Gottfried sum rule Iv

G = 1/3 only. This value
strongly disagrees with the data as analysed by the NMC collaboration [3]
which gave the following result

Iexp
G (Q2 = 4 GeV2) = 0.235 ± 0.026 . (4)
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In contrast to the Adler sum rule the Gottfried sum rule is not exact and
will be modified by both perturbative and non-perturbative corrections. The
perturbative corrections to O(α2

s) were analysed numerically in Ref. [4] and
were found to be small. They cannot explain the discrepancy between the
NMC data and the naive expectation Iv

G = 1/3. A possible resolution is the
existence of a light quark flavour asymmetry with ū(x, Q2) < d̄(x, Q2) over a
significant x-range.

In the case of flavour symmetric sea the perturbative QCD corrections to
the Gottfried sum rule can be written in the form

Iv
G(Q2) = A(αs)C

(l)(αs) , (5)

where A is the anomalous dimension contribution and C (l) is the coefficient
function.

C(l)(αs) =
1

3

[

1 +
∞
∑

n=1

C(l)N=1
n

(

αs

π

)n
]

. (6)

The coefficient function receives no corrections at O(αs), and numerical in-
tegration of the two-loop results of Van Neerven and Zijlstra [5] gave [4]

C
(l)N=1
2 = (3.695C2

F − 1.847CFCA) , (7)

where CA = Nc and CF = (N2
c −1)/2Nc are QCD Casimirs. Combining with

the anomalous dimension part then yields for NF = 3 quark flavours

Iv
G(Q2) =

1

3

[

1 + 0.0355
(

αs

π

)

+

(

−0.853 +
γN=1

2

64β0

)

(

αs

π

)2]

. (8)

Here γN=1
2 is the three-loop anomalous dimension coefficient for e Iv

G(Q2),
which at the time of the calculation of [4] was unknown. The relative one-
loop anomalous dimension coefficient is zero, and at two-loops the result of
calculations [6] is:

γN=1
1 = −4(C2

F − CFCA/2)[13 + 8ζ(3) − 12ζ(2)] . (9)

It is noteworthy that this is proportional to the typical non-planar colour
factor (C2

F −CF CA/2), which is O(1/N 2
c ) suppressed relative to the individual

weights C2
F and CF CA. For higher moments N > 1 this cancellation does

not occur. The formulation of the conjecture started with our observing that
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the numerically calculated two-loop coefficient of Eq.(7) can be rewritten in
the form

C
(l)N=1
2 = (3.695C2

F − 1.847CFCA)

= 3.695(C2
F − CFCA/2.0005) . (10)

So to four sugnificant figures the non-planar colour factor is reproduced. This
suggests the conjecture that in fact the perturbative corrections to the Got-
tfried sum rule are purely non-planar and are suppressed in the large-Nc limit.

At two-loops one can show that this is indeed the case. The two-loop
coefficient C

(l)N=1
2 can be defined through the N = 1 Mellin moment of NS

lepton-nucleon DIS

C
(l)N
2 = 3

∫ 1

0
dx[C(2),(+)(x, 1) + C(2),(−)(x, 1)]xN−1 . (11)

The two-loop functions C(2),(+) and C(2),(−) have been computed by van Neer-
ven and Zijlstra [5], and confirmed using another technique by Moch and Ver-
maseren [7]. For neutrinoproduction DIS the corresponding moments involve
these same functions,

C
(ν)N
2 =

1

2

∫ 1

0
dx[C(2),(+)(x, 1) − C(2),(−)(x, 1)]xN−1 . (12)

The N = 1 case corresponds to the Adler sum rule which has vanishing
corrections, so that C

(ν)N=1
2 = 0, and we can conclude that

∫ 1

0
dxC(2),(+)(x, 1) =

∫ 1

0
dxC(2),(−)(x, 1) . (13)

We can then use this relation to eliminate C (2),(+) from C
(l)N=1
2 to obtain

C
(l)N=1
2 = 2 × 3

∫ 1

0
dxC(2),(−)(x, 1) . (14)

Thus the Gottfried sum rule perturbative coefficients only involve the C (2),(−)

function. One can check directly from the explicit results of [5] that whilst
C(2),(+) receives both planar and non-planar contributions, C (2),(−) is explic-
itly proportional to the non-planar factor (C2

F − CFCA/2). Performing the
C(2),(−) integration to thirty significant figures using MAPLE, and matching
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to the expected structures {1, ζ2, ζ3, ζ4}, gives an analytical formula for the
two-loop coefficient,

C
(l)N=1
2 =

[

−
141

32
+

21

4
ζ(2) −

45

4
ζ(3) + 12ζ(4)

]

CF (CF − CA/2) . (15)

To finally show that to O(α2
s) the perturbative corrections to the Gottfried

sum rule are suppressed in the large-Nc limit one needs to compute γN=1
2 .

The recent calculation of three-loop non-singlet splitting functions by Moch,
Vermaseren and Vogt [8] enabled us to compute this with the result

γN=1
2 = (C2

F − CACF/2)
{

CF

[

290 − 248ζ(2) + 656ζ(3)

− 1488ζ(4) + 832ζ(5) + 192ζ(2)ζ(3)
]

+ CA

[

1081

9
+

980

3
ζ(2) −

12856

9
ζ(3)

+
4232

3
ζ(4) − 448ζ(5)− 192ζ(2)ζ(3)

]

+ NF

[

−
304

9
−

176

3
ζ(2) +

1792

9
ζ(3) −

272

3
ζ(4)

]}

(16)

≈ 161.713785− 2.429260 NF

which was obtained using the results of [9]. There is indeed an overall non-
planar colour factor.

One can extend the conjecture to higher moments N > 1. C (l)N and
C(ν)N both contain the same C(2),(+) term, and have an opposite sign C(2),(−)

term. This immediately implies that at two-loops the coefficient functions for
higher moments have identical planar contributions and differ by non-planar
contributions which are suppressed in the large-Nc limit. The anomalous
dimension coefficients for general moments of non-singlet lepton-nucleon and
neutrino-nuleon DIS, γ(l)N

n and γ(ν)N
n , can be related to splitting functions

P (n)+(x) and P (n)−(x), [6, 7]

γ(l)N
n = −2

∫ 1

0
dxP (n)+(x)xN−1 (17)

and

γ(ν)N
n = −2

∫ 1

0
dxP (n)−(x)xN−1 . (18)
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At both two-loops [6] and at three-loops [7] one can check that the differ-
ence of (+) and (−) splitting functions, P (n)+(x)− P (n)−(x), is proportional
to CF (CF − CA/2) and is non-planar. This immediately demonstrates, us-
ing Eqs.(17) and (18) above, that up to and including three-loop order the
anomalous dimension coefficients γ(l)N

n and γ(ν)N
n differ by non-planar terms,

supressed in the large-Nc limit. Notice that the N = 1 moment is again a
special case since the vanishing corrections to the Adler sum rule require that
γ(ν)N=1

n = 0. From Eq.(17) this implies that
∫ 1
0 dxP (n)−(x) = 0, and hence

given that the difference of splitting functions is non-planar and for n = 1, 2
γ(l)N=1

n in Eqs. (9),(16) for the Gottfried sum rule is also non-planar. The
conjecture is that these features persist at all-loops. We can formulate the
conjecture in a more precise way by introducing the “planar approximation”
[10].

The planar approximation retains only those terms at O(αn
s ) which con-

tain the leading Nc behaviour for each possible power of NF . That is we
define

CN
n |planar = CF

n−1
∑

i=0

CN
n,iN

n−1−i
F N i

c , (19)

where the CN
n,i are pure numbers. The above conjectures then amount to the

statement that
C

(l)N
n,i = 6C

(ν)N
n,i , (20)

or equivalently that
C(l)N

n |planar = 6C(ν)N
n |planar , (21)

for all moments and for all-loops. The relative factor of 6 simply reflects
the relative normalisation of the parton model sum rules. We should note
that the neutrino-nucleon moments will involve quark-loop terms involving
NF dabcdabc/Nc, and we are assuming that such terms are discarded. The
N = 1 case is special precisely because the Adler sum rule is exact, which
ensures that C(l)N=1

n |planar = 0 for the Gottfried sum rule.

If indeed the perturbative corrections to the Gottfried sum rule are non-
planar then this suggests that the infrared renormalons associated with its
coefficient function are also suppressed in the large-Nc limit, but since IR
renormalon ambiguities are of the same form as OPE higher-twist power
corrections, this implies that such higher-twist corrections are also suppressed
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in the large-Nc limit. This raises the possibility that the dominant corrections
to Iv

G arise from a light quark flavour asymmetry. One way of modelling this
non-perturbative effect is the chiral soliton model, which has been used in
Ref. [11] to estimate corrections to the Gottfried sum rule. In this model
one finds

1

2
(3Iv

G − 1) =
∫ 1

0
dx
(

ū(x) − d̄(x)
)

= O(N0
c ). (22)

So the flavour asymmetry persists in the large-Nc limit. These authors ob-
tained an estimate consistent with IG in the range 0.219 to 0.178, in fair
agreement with Iexp

G = 0.235±0.026.

Whilst we believe that there is compelling evidence that our general con-
jectures are correct, what is clearly lacking is a proof. A further check will
be possible when the functions C(3),(+)(x) and C(3),(−)(x) are known, work
on this is underway at present [12]. The conjecture could then be confirmed
up to and including three-loops.
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