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Abstract

A qualitative analysis of the chiral phase transition in QCD at non–
zero baryon density is performed. It is assumed that at zero baryonic
density, ρ = 0, the temperature phase transition is of the second or-
der and quark condesate η =| 〈0 | ūu | 0〉 |=| 〈0 | d̄d | 0〉 | may be
taken as order parameter of phase transition. It is demonstrated, that
the proportionality of baryon masses to quark condensate in the power
1/3, mB ∼| 〈0 | q̄q | 0〉 |1/3 is valid in the wide interval of quark con-
densate values. By supposing, that such specific dependence of baryon
masses on quark condensate takes place up to phase transition point, it
is shown, that at finite baryon density ρ the phase transition becomes
of the first order at the temperature T = Tph(ρ) for ρ > 0. At temper-
atures Tcont(ρ) > T > Tph(ρ) there is a mixed phase consisting of the
quark phase (stable) and the hadron phase (unstable). At the tempera-
ture T = Tcont(ρ) the system experiences a continuous transition to the
pure chirally symmetric phase.

PACS: 11.30.Rd, 12.38.Aw, 25.75.Nq

1 Introduction

It is well known, that the chiral symmetry is valid in perturbative quantum
chromodynamics (QCD) with massless quarks. It is expected also, that the
chiral symmetry takes place in full–perturbative and nonperturbative QCD at
high temperatures, (T >∼ 200 MeV), if heavy quarks (c, b, t) are ignored. The
chiral symmetry is strongly violated, however, in hadronic matter, i.e. in QCD
at T = 0 and low density. What is the order of phase transition between
two phases of QCD with broken and restored chiral symmetry at variation
of temperature and density is not completely clear now. There are different
opinions about this subject (for a detailed review see Ref. [1, 2] and references
therein).
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In this talk I discuss the phase transitions in QCD with two massless quarks,
u and d. Many lattice calculations [3, 4, 5, 6] indicate, that at zero chemical
potential the phase transition is of the second order. It will be shown below,
that the account of baryon density drastically changes the situation and the
transition becomes of the first order, and, at high density, the matter is always
in the chirally symmetric phase.

The masses of light u, d, s quarks which enter the QCD Lagrangian, espe-
cially the masses of u and d quarks, from which the usual (nonstrange) hadrons
are built, are very small, mu, md < 10 MeV as compared with characteristic
mass scale M ∼ 1 GeV. Since in QCD the quark interaction proceeds through
the exchange of vector gluonic field, then, if light quark masses are neglected,
QCD Lagrangian (its light quark part) is chirally symmetric, i.e. not only vec-
tor, but also axial currents are conserved and the left and right chirality quark
fields are conserving separately. This chiral symmetry is not realized in hadronic
matter, in the spectrum of hadrons and their low energy interactions. Indeed,
in chirally symmetrical theory the fermion states must be either massless or de-
generate in parity. It is evident, that the baryons (particularly, the nucleon) do
not possess such properties. This means, that the chiral symmetry of QCD La-
grangian is not realized on the spectrum of physical states and is spontaneously
broken. According to Goldstone theorem spontaneous breaking of symmetry
leads to appearance of massless particles in the spectrum of physical states –
the Goldstone bosons.

Let us first consider a case of the zero baryonic density and suppose that
the phase transition from chirality violating phase to the chirality conserving
one is of the second order. The second order phase transition is, generally,
characterized by the order parameter η. The order parameter is a thermal
average of some operator which may be chosen in various ways. The physical
results are independent on the choice of the order parameter. In QCD the quark
condensate, η = |〈0|ūu|0〉| = |〈0|d̄d|0〉| ≥ 0, may be taken as such parameter.
In the phase of broken chiral symmetry (hadronic phase) the quark condensate
is non-zero and has the normal hadronic scale, 〈0 | q̄q | 0〉 = (250MeV )3, in the
phase of restored chiral symmetry it is vanishing.

The quark condensate has the desired properties: as it was demonstrated
in the chiral effective theory [7, 8], η decreases with the temperature increasing
and an extrapolation of the curve η(T ) to the higher temperatures indicates,

that η vanishes at T = T
(0)
c ≈ 180 MeV. Here the superscript ”0” indicates that

the critical temperature is taken at zero baryon density. The same conclusion
follows from the lattice calculations [3, 6, 9], where it was also found that the
chiral condensate η decreases with increase of the chemical potential [10, 11].

Apply the general theory of the second order phase transitions [12] and

consider the thermodynamical potential Φ(η) at the temperature T near T
(0)
c .

Since η is small in this domain, Φ(η) may be expanded in η:

Φ(η) = Φ0 +
1

2
A η2 +

1

4
B η4 , B > 0 . (1)

For a moment we neglect possible derivative terms in the potential.
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The terms, proportional to η and η3 vanish for general reasons [12]. In
QCD with massless quarks the absence of η and η3 terms can be proved for

any perturbative Feynman diagrams. At small t = T − T
(0)
c the function A(t)

is linear in t: A(t) = at, a > 0. If t < 0 the thermodynamical potential Φ(η)
is minimal at η 6= 0, while at t > 0 the chiral condensate vanishes η = 0.
At small t the t-dependence of the coefficient B(t) is inessential and may be
neglected. The minimum, η̄, of the thermodynamical potential can be found
from the condition, ∂Φ/∂η = 0:

η̄ =

{ √

−at/B , t < 0 ;
0 , t > 0 .

(2)

It corresponds to the second order phase transition since the potential is quartic
in η and – if the derivative terms are included in the expansion – the correlation

length becomes infinite at T = T
(0)
c .

2 Nucleon mass and quark condensate

I show now, that the existence of large baryon masses and the appearance of
violating chiral symmetry quark condensate are deeply interconnected and even
more, that baryon masses arise just due to quark condensate. I will use the
QCD sum rule method invented by Shifman, Vainstein and Zakharov [13], in its
applications to baryons [14-17]. (For a review and collection of relevant original
papers see [18]). The idea of the method is that at virtualities of order Q2 ∼ 1
GeV2 the operator product expansion (OPE) may be used in consideration of
hadronic vacuum correlators. In OPE the nonoperturbative effects reduce to
appearance of vacuum condensates and condensates of the lowest dimension
play the most important role. The perturbative terms are moderate and do not
change the results in essential way, especially in the cases of chiral symmetry
violation, where they can appear as corrections only.

For definiteness consider the proton mass calculation [14,15]. Introduce the
polarization operator

Π(p) = i

∫

d4xeipx〈0|Tξ(x), ξ̄(0)|0〉 (3)

where ξ(x) is the quark current with proton quantum numbers and p2 is chosen
to be space-like, p2 < 0, |p2| ∼ 1 GeV 2. The current ξ is the colourless product
of three quark fields, ξ = εabc qaqbqc, q = u, d, the form of the current will be
specialized below. The general structure of Π(p) is

Π(p) = p̂f1(p) + f2(p) (4)

The first structure, proportional to p̂ is conserving chirality, while the second is
chirality violating.

For each of the functions fi(p
2), i = 1, 2 the OPE can be written as:
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Figure 1: The bare loop diagram, contributing to chirality conserving function
f1(p

2): solid lines correspond to quark propagators, crosses mean the interaction
with external currents.

Figure 2: The diagram, corresponding to chirality violating dimension 3 oper-
ator (quark condensate). The dots, surrounded by circle mean quarks in the
condensate phase. All other notation is the same as on Fig.1.

fi(p
2) =

∑

n

C(i)
n (p2)〈0|O(i)

n |0〉 (5)

where 〈0|O
(i)
n |0〉 are vacuum expectation values (v.e.v) of various operators (vac-

uum condensates), C
(i)
n are coefficient functions calculated in QCD. For the first,

conserving chirality structure function fi(p
2) OPE starts from dimension zero

(d = 0) unit operator. Its contribution is described by the diagram of Fig.1 and

p̂f1(p
2) = C0p̂p4ln[Λ2

u/(−p2)] + polynomial, (6)

where C0 is a constant, Λu is the ultraviolet cutoff. The OPE for chirality
violating structure f2(p

2) starts from d = 3 operator, and its contribution is
represented by the diagram of Fig.2:

f2(p
2) = C1p

2〈0|q̄q|0〉ln
Λ2

u

(−p2)
+ polynomial (7)

Let us for a moment restrict ourselves to this first order terms of OPE and
neglect higher order terms (as well the perturbative corrections).

On the other hand, the polarizaion operator (3) may be expressed via the
characteristics of physical states using the dispersion relations

fi(s) =
1

π

∫

Imfi(s
′)

s′ + s
ds′ + polynomial, s = −p2 (8)
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The proton contribution to ImΠ(p) is equal to

ImΠ(p) = π〈0|ξ|p〉〈p|ξ|0〉δ(p2 − m2) = πλ2
N (p̂ + m)δ(p2 − m2), (9)

where

〈0|ξ|p〉 = λNv(p), (10)

λN is a constant, v(p) is the proton spinor and m is the proton mass. Still
restricting ourselves to this rough approximation, we may take equal the calcu-
lated in QCD expression for Π(p) (Eq.’s(6),(7)) to its phenomenological repre-
sentation Eq.(9). The best way to get rid of unknown polynomial, is to apply
to both sides of the equality the Borel(Laplace) transformation, defined as

BM2f(s) = lim
n→∞,s→∞,

s/n=M2=Const

sn+1

n!

(

−
d

ds

)n

f(s) (11)

=
1

π

∞
∫

0

dsImf(s)e−s/M2

if f(s) is given by dispersion relation (8). Notice, that

BM2

1

sn
=

1

(n − 1)!(M2)n−1
(12)

Owing to the factor 1/(n − 1)! in (12) the Borel transformation suppresses
the contributions of high order terms in OPE.

Specify now the quark current ξ(x). It is clear from (9) that proton contribu-
tion will dominate in some region of the Borel parameter M 2 ∼ m2 only in the
case when both calculated in QCD functions f1 and f2 are of the same order.
This requirement, together with the requirements of absence of derivatives and
of renormcovariance fixes the form of current in unique way (for more details
see [14,15]):

ξ(x) = εabc(uaCγµub)γµγ5d
c (13)

where C is the charge conjugation matrix. With the current η(x) (13) the
calculations of the diagrams Fig.2 can be easily performed, the constants C0

and C1 are determined. The terms of OPE up to dimension 8 were accounted in
the sum rule for the conserving chirality structure function f1(p

2) and the terms
up to dimension 7 were accounted in the violating chirality structure function
f2(p

2). The perturbative corrections are neglected. The phenomenological parts
of the sum rules were represented by contributions of proton and continuum,
the latter were transferred to QCD parts. The resulting sum rules after Borel
transformation have the form [16,17]

M6E2(M)L−4/9 +
4

3
a2L4/9 +

1

4
bM2E0(M)L−4/9−
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−
1

3
a2m2

0

1

M2
= λ̄2

Nexp

(

−
m2

M2

)

(14)

a

[

2M4E1(M) +
272

81
havetheform[16, 17]

M6E2(Mrac112b

]

= mλ̄2
Nexp

(

−
m2

M2

)

(15)

a = −(2π)2〈0 | q̄q | 0〉 (16)

b = (2π)2〈0 |
αs

π
G2

µν | 0〉 (17)

g〈0 | q̄σµν
λn

2
G2

µνq | 0〉 = m2
0〈0 | q̄q | 0〉 (18)

En

(

s0

M2

)

=
1

n!

s0/M2

∫

0

zne−zdz (19)

L =
αs(µ)

αs(M)
(20)

λ̄2
N = 32π2λ2

N (21)

L(M, µ) in (14),(15) account the anomalous dimensions of the current ξ(x) and
various operators, En( s0

M2 ) accounts the continuum contribution, which starts
at s = s0. The ratio of (15) to (14) gives for proton mass

m = 2a
1

M2
f(M2) (22)

The inspection of the r.h.s. of (21) at the values of QCD parameters a =
0.63 GeV3, b = 0.24 GeV4, m2

0 = 0.8 GeV2, s0 = 2.3 GeV2 shows, that at
0.8 < M2 < 1.4 GeV2 with a good accuracy f(M 2) is equal to 1 and the value
M2 = m2 is close to the middle in the plateau. So we get a simple formula for
proton mass [14]

m = [−2(2π)2〈0|q̄q|0〉]1/3 (23)

Let us now check, if eq.(23) is valid at variation of quark condensate value.
Perform the scale variation 〈0 | qq | 0〉 → γ〈0 | q̄q | 0〉, m → γ1/3m, M →
γ1/3m, s0 → γ2/3s0. Then as can be seen from the (14,15) the only violations of
eq.(23), come from terms, proportional to b and m2

0 in (14),(15). But they are
very small. Therefore, even at γ = 1/3, the relation (23) changes no more, than
by 7%. To go to lower values of γ is not possible, because of strongly increasing
perturbative corrections.
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This formula demonstrates the fundamental fact, that the appearance of
the proton mass is caused by spontaneous violation of chiral invariance: the
presence of quark condensate. (Numerically, (23) gives the experimental value
of proton mass with an accuracy better than 10%).

In the same way, the hyperons, isobar and some resonances masses were
calculated, all in a good agreement with experiment [14,16]. I will not dwell
on these results. The main conclusion is: the origin of baryon masses is in
spontaneous violation of chiral invariance – the existence of quark condensate
in QCD.

3 The chiral phase transition in the presense of

finite

baryon density

I would like to consider here the influence of baryon density on the chiral phase
transition in hadronic matter. Kogan, Kovner and Tekin [19] have suggested
the idea, that baryons may initiate the restoration of chiral symmetry, if their
density is high – when roughly half of the volume is occupied by baryons. The
physical argument in favour of this idea comes from the hypothesis (supported
by calculation in chiral soliton model of nucleon [20]), that inside the baryon the
chiral condensate has the sign opposite to that in vacuum. This hypothesis is not
proved. Even more, it is doubtful, that the concept of quark condensate inside
the nucleon can be formulated in a correct way in quantum theory. But the idea
on the strong influence of baryon density on the chiral phase transition looks
very attractive. For this reason no assumption on the driving mechanism of
chiral phase transition at zero baryon density will be done here. The problem,
under consideration is: how the phase transition changes in the presence of
baryons. The content of my talk closely follows ref.21.

For completeness it must be mentioned, that the variation of quark codensate
with temperature is not the only source of baryon effective mass shift. At low
T the effective baryon mass shift arises also due to interaction with pions in
thermal bath [22,23]. However, this mass shift, which may be called external
(unlike the internal, arising from variation of quark condensate) is related to
effective mass, i.e. to propagation of baryon in the matter and has nothing
to do with the properties of the matter as a whole and the phase transition.
(A similar phenomenon takes place in case of vector mesons, where because of
interaction with pions in the thermal bath the mixing with axial mesons arises
[24].)

Consider the case of the finite, but small baryon density ρ (by ρ we mean
here the sum of baryon and anti–baryon densities). For a moment, consider
only one type of baryons, i.e. the nucleon. The temperature of the phase
transition, Tph, is, in general, dependent on the baryon density, Tph = Tph(ρ),

with Tph(ρ = 0) ≡ T
(0)
c At T < Tph(ρ) the term, proportional to Eρ, where

E =
√

p2 + m2 is the baryon energy, must be added to the thermodynamical
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potential (1). As was shown above the nucleon mass m (as well as the masses of
other baryons) arises due to the spontaneous violation of the chiral symmetry
and is approximately proportional to the cubic root of the quark condensate:
m = cη1/3, with c = (8π2)1/3 for a nucleon. At small temperatures T the baryon
contribution to Φ is strongly suppressed by the Boltzmann factor e−E/T and
is negligible. Below we assume that the proportionality m ∼ η1/3 is valid in a
broad temperature interval up to phase transition point. Arguments in favor of
such an assumption are based on the expectation that the baryon masses vanish
at T = Tph(ρ) and on the dimensional grounds. Near the phase transition point

E =
√

p2 + m2 ≈ p + c2 η2/3/(2p). At η → 0 all baryons are accumulating near
zero mass and a summation over all baryons gives us – instead of eq. (1) – the
following:

Φ(η, ρ) = Φ0 +
1

2
at η2 +

1

4
B η4 + Cη2/3ρ , (24)

where C =
∑

i c2
i /(2pi). The term ρ

∑

i pi is absorbed into Φ0 since it is inde-
pendent on the chiral condensate η. The typical momenta are of the order of
the temperature, pi ∼ T . Thus, Eq. (24) is valid in the region η � T 3. In the
leading approximation the coefficient C can be considered as independent on

the temperature at T ∼ T
(0)
c .

Due to the last term in Eq. (24) the thermodynamical potential always have
a local minimum at η = 0 since the condensate η is always non–negative. At
small t < 0 there also exists a local minimum at η > 0, which is a solution of
the equation:

∂Φ

∂η
≡ (at + B η2)η +

2

3
Cρ η−1/3 = 0 . (25)

At small enough baryon density ρ, Eq. (25) [visualized in Figure 3(a)] has,
in general, two roots, η1 < η0 and η2 > η0, where η0 = (−at/3B)1/2 is the min-
imum of the first term in the right-hand side of Eq. (25). The calculation of the
second derivative ∂2Φ/∂η2 shows that the second root η2 (if exists) corresponds
to minimum of Φ(η) and, therefore, is a local minimum of Φ. The point η = η1

corresponds to a local maximum of the thermodynamical potential since at this
point the second derivative is always non–positive.

The thermodynamical potential Φ(η, ρ) at (fixed) non–zero baryon density
ρ has the form plotted in Figure 3(b). At low enough temperatures (curve T1)
the potential has a global minimum at η > 0 and system resides in the chirally
broken (hadron) phase. As temperature increases the minima at η = 0 and
at η = η̄2 > 0 becomes of equal height (curve T2 ≡ Tph). At this point the
first order phase transition to the quark phase takes place. At somewhat higher
temperatures, T = T3 > Tph, the η > 0 minimum of the potential still exist
but Φ(η = 0) < Φ(η̄2). This is a mixed phase, in which the bubbles of the
hadron phase may still exist. However, as temperature increases further, the
second minimum disappears (curve T4 ≡ Tcont). This temperature corresponds
to a continuous transition to the pure quark phase, in which the thermodynamic
potential has the form T5.
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Figure 3: (a) Graphical representation of Eq. (25): ”I” is the first term and ”II”
the second term (with the opposite sign) in the r.h.s. of the equation. (b) The
thermodynamic potential (24) vs. the chiral condensate at a fixed baryon density
ρ > 0. At low enough temperatures, T = T1, the system resides in the chirally
broken (hadron) phase. The first order phase transition to the quark phase
takes place at Tph = T2 > T1. At somewhat higher temperatures, T3 > Tph

the system is in a mixed state. The temperature T4 ≡ Tcont corresponds to
a continuous transition to the pure quark phase, in which the thermodynamic
potential has the form T5.

Let us calculate the temperature of the phase transition, Tph(ρ), at non–zero
baryon density ρ. The transition corresponds to the curve T2 in Figure 3(b),
which is defined by the equation Φ(η̄2, ρ) = Φ(η = 0, ρ), where η̄2 is the second
root of Eq. (25) as discussed above. The solution is

Tph(ρ) = T (0)
c −

5

a

(

2 C ρ

3

)3/5(

B

4

)2/5

, (26)

and the second minimum of the thermodynamic potential is at

η̄2 = [4a (T (0) − Tph(ρ))/(5 B)]
1/2

.
At a temperature slightly higher than Tph(ρ) the potential is minimal at

η = 0, but it has also an unstable minimum at some η > 0. The existence
of metastable state is also a common feature of the first order phase transition
(e.g., the overheated liquid in case of liquid–gas system). With a further increase
of the density ρ (at a given temperature) the intersection of the two curves in
Figure 3(a) disappears and the two curves only touch one another at one point
η = η̄4. At this temperature a continuous transition (crossover) takes place.
The corresponding potential has the characteristic form denoted as T4 in Figure
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3(a). The temperature T4 ≡ Tcont is defined by the condition that the first (25)
and the second derivatives of Eq. (24) vanish:

Tcont(ρ) = T (0)
c −

5

a

(

2 C ρ

9

)3/5(

B

2

)2/5

, (27)

and the value of the chiral condensate, where the second local minimum of

the potential disappears is given by η̄4 = [2a(Tcont(ρ) − T
(0)
c )/(5 B)]

1/2
. At

temperatures T > Tcont(ρ) the potential has only one minimum and the matter
is in the state with the restored chiral symmetry. Thus, in QCD with massless
quarks the type of phase transition with the restoration of the chiral symmetry
strongly depends on the value of baryonic density ρ. At a fixed temperature, T <

T
(0)
c , the phase transition happens at a certain critical density, ρph. According

to Eq. (26) the critical density has a kind of a ”universal” dependence on the

temperature, ρph(T ) ∝ [T
(0)
c − T ]5/3, the power of which does not depend on

the parameters of the thermodynamic potential, a and B.

r

T0 Tc

Hadron
Phase

Mixed Phase

(chirally symmetric phase)

Quark Phase

(0)

c
ro

sso
ve

r
1st order

r

T0 Tc

1st order

Hadron
Phase

Quark Phase

order

c
ro

sso
ve

r

2nd

(0)

Mixed Phase

(a) (b)

Figure 4: The qualitative phase diagram at finite baryon density and temper-
ature based on the analysis (a) without and (b) with indication of the approxi-
mate 2-nd order transition domain.

The expected phase diagram is shown qualitatively in Figure 4(a). This
diagram does not contain an end-point which was found in lattice simulations
of the QCD with a finite chemical potential [25,26]. One may expect that this
happens because in our approach a possible influence of the confinement on the
order of the chiral restoration transition was ignored. Intuitively, it seems that
at low baryon densities such influence is absent indeed: the deconfinement phe-
nomenon refers to the large quark–anti-quark separations while the restoration
of the of the chiral symmetry appears due to fluctuations of the gluonic fields
in the vicinity of the quark. However, the confinement phenomenon dictates
the value of the baryon size which can not be ignored at high baryon densities,
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when the baryons are overlapping. If the melting of the baryons happens in the
hadron phase depicted in Figure 4(a), then at high enough density the nature
of the transition could be changed. This may give rise in appearance of the
end-point observed in Ref.[25,26].

The domain where the inequality |at| � Cρη2/3, ρ 6= 0 is fulfilled, has specific
features. In this domain the phase transition looks like a smeared second order
phase transition: the specific heat has (approximately) a discontinuity at the
phase transition point, ∆Cp = a2Tc/2B. This statment follows from general
theory [12]. At | at |� Cρη2/3 the last term in (17) may be neglected and we
find for the entropy

S = −
∂Φ

∂T
= S0 −

1

2

∂A

∂T
η2 (28)

In the phase above phase transition, η = 0, S = S0. Below phase transition

S = S0 +
a2

2B
(T − Tc) (29)

The specific heat Cp = T (∂S/∂T )p below the phase transition in the limit
T → Tc is equal

Cp = Cp0
+

a2

2B
Tc (30)

The correlation length increases as (T − T
(0)
c )

−1/2
at T − T

(0)
c → 0. The

latter arises if we include the derivative terms in the effective thermodynamical
potential. The phase diagram with this domain indicated may look as it is shown
in Figure 4(b). Note that the applicability of our considerations is limited to

the region |T − T
(0)
c |/T

(0)
c � 1 and low baryon densities.

In the real QCD the massive heavy quarks (the quarks c, b, t) do not influence

on this conclusion, since their concentration in the vicinity of T ≈ T
(0)
c ∼

200 MeV is small. However, the strange quarks, the mass of which ms ≈

150 MeV is just of order of expected T
(0)
c , may change the situation. This

problem deserves further investigation.
This work was supported in part by INTAS grant 2000-587, RFBR grants

03-02-16209.
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