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Abstract

Lattice QCD simulations at finite temperature have shown that
the chiral phase transition in the chiral limit and the deconfinement
phase transition in the quenched limit are continuously connected. I
propose an unconventional scenario which unifies the two phase tran-
sitions. The continuity of the two phase transitions is a manifestation
of the familiar glueball-meson mixing, which can be traced back to
the properties of QCD at zero temperature.

1 Introduction and motivation

In QCD at finite temperature, there are two kinds of phase transitions in two
different limits of the quark mass parameter. The chiral phase transition in
the chiral limit and the deconfinement phase transition in the quenched limit.
Away from these limits, the meanings of these phase transitions become less
transparent. Nevertheless, the notions of deconfinement and chiral symme-
try restoration are indispensable for our understanding of the quark-gluon
plasma phase. In this talk we discuss the possible deep relation between the
two phase transitions in the intermediate quark mass region.

In a table below, some key properties of the two phase transitions are
listed.
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chiral phase deconfinement phase
transition transition

quark mass 0 ∞

symmetry chiral symmetry center symmetry
order parameter quark condensate Polyakov loop

At first sight, it does not make sense to talk about the relationship be-
tween the two phase transitions. They are defined in completely different
theories in the first place. Symmetries are different, and the order param-
eters are different. Just by looking at the table, little do we suspect that
the two phase transitions have anything to do with each other. Therefore, it
is quite natural that they have long been considered as distinct phase tran-
sitions and questions like “Which phase transition occurs first?” have been
addressed many times in the literature.

However, putting these theoretical speculations aside, finite temperature
lattice simulations have repeatedly shown that the two phase transitions
occur at the same critical temperature. Fig 1. is the most commonly accepted
phase diagram of QCD in the temperature-quark mass plane. [1] This figure
shows that, for all values of the quark mass, there is a single (crossover) phase
transition which smoothly connects the chiral phase transition in the chiral
limit and the deconfinement phase transition in the quenched theory.

We emphasize that this is a very nontrivial result. Theorists were able to
predict the order of phase transitions at m = 0 and m = ∞.[2, 3] Theorists
could also predict that the first order chiral (deconfinement) phase transition
would turn into a crossover if the quark mass was increased from 0 (decreased
from ∞). However, no one could predict the global structure of the phase
diagram shown in Fig. 1 because physics at the intermediate quark mass

region is non-universal. One cannot invoke the usual universality argument of
phase transitions to predict anything in this region. The continuity of the two
phase transitions is a consequence of the non-perturbative dynamical effect
of QCD, which is far from obvious. And, of course, such a non-universal
phenomenon is one of the most interesting aspects of a given theory. In
this report, we will propose a novel scenario[4] which naturally explains the
puzzling lattice data, Fig. 1.
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Figure 1: The QCD phase diagram in the temperature-quark mass plane. T
is the temperature and m is the quark mass. Solid (dotted) lines represent
first order (crossover) phase transition. C and D are second order phase
transition points.

2 The level repulsion scenario

The interplay between the two transitions is an old but interesting prob-
lem. First, Gocksch and Ogilvie observed[5] that what is responsible for the
breaking of center symmetry is (the inverse of) the constituent quark mass
rather than the current quark mass. This suggests that the Polyakov loop
and the chiral dynamics are closely coupled. Their model was recently re-
fined and extended by Fukushima [6]. So far, most of the works on this
subject focused on the coupling of the Polyakov loop and the sigma field.
Here we point out that, in the presence of dynamical quarks, the decon-
finement phase transition can equivalently be characterized in terms of the
glueballs. Specifically, we have predicted [4] that the screening mass of the
0+ electric1 glueball goes to zero with the specified critical exponent at the
second order deconfinement phase transition. In the case of color SU(2), this

1See, for example, Ref.[7] for the meaning of these quantum numbers. ’Electric’ means
that the glueball interpolating operator contains A0’s or timelike links. One can also
consider 0+ ’magnetic’ glueballs (composed only from spacelike links) which, in principle,
mix with the electric ones. However, near the critical temperature and above, it has been
observed[8] that the mixing is very weak, could be absent.

3



screening state is responsible for the weak divergence of the specific heat at
the Z(2) phase transition but is distinct from the true order parameter field,
namely, the Polyakov loop. However, in the case of color SU(3), at the point
D, nonzero expectation value of the Polyakov loop induces mixing between
the glueball and the Polaykov loop. Therefore, the glueball is an equivalent
critical field at D. Datta and Gupta observed a significant decrease of the
0+ glueball screening mass near the SU(2) phase transition in the quenched
simulation.[7] We believe that the mass will go to zero in the infinite lattice
volume limit.

Next we observe that the glueball field G must mix with the sigma field
σ so that the correct massless field at D is a linear combination of the two;

φ = G cos θ + σ sin θ, sin θ ≈ 0. (1)

The orthogonal linear combination with large sigma field content,

φ′ = −G sin θ + σ cos θ, (2)

is massive. Now the key question is the behavior of the mixing angle θ as the
quark mass varies. If the mixing angle remains small at small values of the
quark mass, the φ′ field, which is massive at D, would become massless at
C because the critical field at C is dominantly sigma-like.[9] However, if this
were the case, the coincidence of the two critical temperatures for all values of
the quark mass would be a pure accident. Fig. 1 is most naturally explained
by postulating that the critical field at C is again the φ field. Namely, the
two second order phase transitions at C and D are driven by the same field.
This is possible only if the mixing angle changes from θ ≈ 0 to ≈ π/2.2 Such
a continuous variation of the mixing angle is typical of a level repulsion in
quantum mechanics. Thus we have arrived at a novel scenario of the finite
temperature QCD phase transition: Due to a level repulsion between the φ
and the φ′ fields, the φ field continues to be the lightest screening state for
all values of the quark mass. Simultaneous divergences and peaks in various
susceptibilities are simply caused by the dropping of the φ field screening
mass.

Moreover, we conjecture that this scenario is realized at all temperatures,
not only near the critical temperature. The level repulsion between the scalar

2The mixing angle will go to exactly π/2 at the chiral symmetry restoration point in
the chiral limit.
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glueball and the sigma meson takes place already at zero temperature as one
can easily convince oneself by considering the scalar meson and glueball mass
spectrum at zero temperature.3 Therefore, our scenario can be naturally
embedded in the entire phase diagram, Fig. 2.

Note that this argument is made possible only when one characterizes the
deconfinement phase transition in terms of the glueball. (The Polyakov loop
cannot be defined at zero temperature.)

3 Conclusion

We have pointed out the importance of the glueball screening states for the
understanding of the QCD phase diagram for all values of the quark mass and
the temperature. Compared to Polyakov loops, glueballs have been much less
studied on a lattice at finite temperature with or without dynamical quarks.
We expect that further glueball measurements will provide rich information
on the nature of the thermal QCD phase transition. On the other hand, it
turned out to be very difficult to reproduce the lattice result, Fig. 1, in model
calculations. The main difficulty is to keep track of the important coupling
between the two fields in the intermediate quark mass region where there
is no guiding principle (no symmetry) to construct the effective potential.
(For details and discussions, see Ref.[10].) This remains to be a theoretical
challenge.
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