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Abstract

Mass spectra and semileptonic decay rates of doubly heavy baryons

are studied in the framework of the relativistic quark model in the

quark-diquark approximation.

The description of doubly heavy baryon properties acquires in the last
years the status of actual physical problem which can be studied experi-
mentally. The appearance of experimental data on Bc mesons, heavy-light
baryons stimulates the investigation of heavy quark bound systems and can
help in discriminating numerous quark models. Recently first experimen-
tal indications of the existence of doubly charmed baryons were published by
SELEX [1]. Although these data need further experimental confirmation and
clarification it manifests that in the near future the masses and decay rates of
doubly heavy baryons will be measured. This gives additional grounds for the
theoretical investigation of the doubly heavy baryon properties. The success
of the heavy quark effective theory (HQET) in predicting properties of the
heavy-light qQ̄ mesons (B and D) suggests to apply these methods to heavy-
light baryons, too. The semileptonic decays of heavy hadrons present also
an important tool for determining the elements of the Cabibbo-Kobayashi-
Maskawa (CKM) matrix.

Doubly heavy baryons occupy a special position among existing baryons
because they can be studied in the quark-diquark approximation and the
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two-particle bound state methods can be applied. The two heavy quarks
compose in this case a bound diquark system in the antitriplet colour state
which serves as a localized colour source. The light quark q is orbiting around
this heavy source at a distance much larger (∼ 1/mq) than the source size
(∼ 2/mQ), see Fig. 1. The estimates of the light quark velocity in these
baryons show that its value is v/c ∼ 0.7− 0.8 and the light quark should be
treated fully relativistically. Thus the doubly heavy baryons look effectively
like a two-body bound system and strongly resemble the heavy-light B and
D mesons. Then the HQET expansion in the inverse heavy diquark mass
can be performed. The ground state baryons with two heavy quarks can be
composed from a compact doubly heavy diquark of spin 0 or 1 and a light
quark. According to the Pauli principle the diquarks (bb) or (cc) have the
spin 1 whereas diquark (bc) can have both the spin 0 and 1.

Here we study mass spectra and semi-
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Figure 1: Schematic picture
of doubly heavy baryon.

leptonic decay rates of doubly heavy baryons
using the relativistic quark model in the quark
-diquark approximation.

In the quark-diquark picture of doubly
heavy baryons the bound states of two heavy
quarks and of the light quark and the heavy
diquark are described by the diquark wave
function (Ψd) and by the baryon wave func-
tion (ΨB), respectively. These wave functions
satisfy the two-particle quasipotential equa-
tion of the Schrödinger type [2]

(

b2(M)

2µR
− p2

2µR

)

Ψd,B(p) =

∫

d3q

(2π)3
V (p,q; M)Ψd,B(q), (1)

where the relativistic reduced mass is

µR =
E1E2

E1 + E2
=

M4 − (m2
1 − m2

2)
2

4M3
, (2)

and the center of mass energies of particles on the mass shell E1, E2 are given
by

E1 =
M2 − m2

2 + m2
1

2M
, E2 =

M2 − m2
1 + m2

2

2M
. (3)

Here M = E1 +E2 is the bound state mass (diquark or baryon), m1,2 are the
masses of heavy quarks (Q1 and Q2) which form the diquark or of the heavy
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diquark (d) and light quark (q) which form the doubly heavy baryon (B),
and p is their relative momentum. In the center of mass system the relative
momentum squared on mass shell reads

b2(M) =
[M2 − (m1 + m2)

2][M2 − (m1 − m2)
2]

4M2
. (4)

The kernel V (p,q; M) in Eq. (1) is the quasipotential operator of the
quark-quark or quark-diquark interaction. It is constructed with the help
of the off-mass-shell scattering amplitude, projected onto the positive energy
states. Here we closely follow the similar construction of the quark-antiquark
interaction in heavy mesons which were extensively studied in our relativistic
quark model [3, 4]. For the quark-quark interaction in a diquark we use the
relation VQQ = VQQ̄/2 arising under the assumption about the octet structure
of the interaction. The quasipotential of the quark-antiquark interaction VQQ̄

is the sum of the usual one-gluon exchange term and the confining part which
is the mixture of long-range vector and scalar linear potentials, where the
vector confining potential contains the Pauli term. The explicit expressions
for VQQ and Vdq and the details of the mass spectrum calculation are given
in Ref. [5]. The quark masses have the following values mb = 4.88 GeV,
mc = 1.55 GeV, ms = 0.50 GeV, mu,d = 0.33 GeV.

The masses of the ground state axial vector diquarks were found to be
MAV

cc = 3.226 GeV, MAV
bb = 9.778 GeV, MAV

bc = 6.526 GeV, and the mass
of the scalar diquark MS

bc = 6.519 GeV. We calculated the mass spectra of
light-quark – heavy-diquark system first in the infinitely heavy diquark mass
limit and then with the inclusion of 1/Md corrections. In the infinitely heavy
diquark mass limit its mass and spin decouple and the dynamics of the heavy
hadron is determined by the light quark alone in accord with the heavy quark
symmetry. Thus the properties of heavy-light mesons and doubly heavy
baryons are similar in the limit mQ → ∞. Inclusion of the first order 1/mQ

corrections breaks the heavy quark symmetry and leads to different splittings
in mesons and baryons [3, 5]. Note that in our calculations we treated the
light quark completely relativistically without applying unjustified expansion
in inverse powers of its mass.

The mass level orderings of Ξcc and Ξbb baryons are schematically shown
in Fig. 2. There we first show our predictions for spectra in the limit when
all 1/Md corrections are neglected. In this limit the P -wave excitations of
the light quark are inverted. This means that the mass of the state with
higher light quark angular momentum j = 3/2 is smaller than the mass of
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Figure 2: Masses of Ξcc (left) and Ξbb baryons (right) (in GeV).
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the state with lower angular momentum j = 1/2. Next we switch on 1/Md

corrections. This results in splitting of the degenerate states and mixing of
states with different j, which have the same total angular momentum J and
parity. The fine splitting of P -levels turns out to be of the same order of
magnitude as the gap between j = 1/2 and j = 3/2 degenerate multiplets in
the Md → ∞ limit. The inclusion of 1/Md corrections leads also to relative
shifts of the hadron levels further decreasing this gap. As a result, some of
the P -levels from different (initially degenerate) multiplets overlap; however,
the centers of levels averaged over the heavy diquark spin remain inverted.

����� �������

�

�

	 	�


Figure 3: Weak transition matrix element of the doubly heavy baryon in the
quark-diquark approximation.

The consideration of semileptonic decays of doubly heavy baryons (bbq)
or (bcq) to doubly heavy baryons (bcq) or (ccq) can be divided into two steps
(see Fig. 3). The first step is the study of form factors of the weak transition
between initial and final doubly heavy diquarks. The second one consists in
the inclusion of the light quark in order to compose a baryon with spin 1/2
or 3/2.

In the relativistic quark model the transition matrix element between two
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Figure 4: The leading order contribution Γ(1) to the diquark vertex function
Γ.

5



diquark states is determined [6] by the convolution of the wave functions Ψd

of the initial and final diquarks with the two particle vertex function Γ

〈d′(Q)|JW
µ |d(P )〉 =

∫

d3p d3q

(2π)6
Ψ̄d′,Q(q)Γµ(p,q)Ψd,P (p). (5)

Here P = vMi, Mi, v denote the four-momentum, mass and four-velocity of
the initial diquark QbQs and Q = v′Mf , Mf , v′ denote the four-momentum,
mass and four-velocity of the final diquark QaQs; p and q are the relative
quark-quark momenta.

The leading contribution to the vertex function Γµ comes from the di-
agram in Fig. 4 (index b denotes the initial active quark, index a the final
active quark and index s the spectator)

Γµ(p,q) = Γ(1)
µ

= ūa(q1)γµ(1 − γ5)ub(p1)ūs(q2)us(p2)(2π)3δ(p2 − q2), (6)

where u(p) is the Dirac spinor.
The transformation of the bound state wave function from the rest frame

to the moving one with four-momentum P is given by [6]

Ψd,P (p) = D
1/2
b (RW

LP
)D1/2

s (RW
LP

)Ψd,0(p), (7)

where RW is the Wigner rotation, LP is the Lorentz boost from the diquark
rest frame to a moving one, and D1/2(R) is the rotation matrix.

Using this relation and the properties of the Dirac spinors and rotation
matrices we can express the matrix element (5) in the form of the trace over
spinor indices of both particles [7]. The final covariant expression for the
transition matrix element reads

〈d′(Q)|JW
µ |d(P )〉

2
√

MiMf

=

∫

d3p d3q

(2π)3
×

× Tr{Ψ̄d′(Q, q)γµ(1 − γ5)Ψd(P, p)}δ3(p2 − q2), (8)

where the amplitudes for the scalar (S) and axial vector (AV ) diquarks (d)
are given by

ΨS(P, p)=

√

εb(p) + mb

2εb(p)

√

εs(p) + ms

2εs(p)
× (9)

×
[

v̂ + 1

2
√

2
+

v̂ − 1

2
√

2

p̃2

(εb(p) + mb)(εs(p) + ms)
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−
(

v̂ + 1

2
√

2

1

εs(p) + ms
+

v̂ − 1

2
√

2

1

εb(p) + mb

)

ˆ̃p

]

γ0ΦS(p),

ΨAV (P, p, ε)=

√

εb(p) + mb

2εb(p)

√

εs(p) + ms

2εs(p)
× (10)

×
[

v̂ + 1

2
√

2
ε̂ +

v̂ − 1

2
√

2

p̃2

(εb(p) + mb)(εs(p) + ms)
ε̂

− v̂ − 1

2
√

2

2(ε · p̃)ˆ̃p

(εb(p) + mb)(εs(p) + ms)

+
v̂ + 1

2
√

2

ε̂ ˆ̃p

εs(p) + ms
− v̂ − 1

2
√

2

ˆ̃pε̂

εb(p) + mb

]

γ0γ
5ΦAV (p).

Here Φd(p) ≡ Ψd,0(p)/
√

2Md is the diquark wave function in the rest frame
normalized to unity and the four-vector p̃ = LP (0,p). The argument of the
δ-function in Eq. (8) can be rewritten as

p2 − q2 = q − p − εs(p) + εs(q)

w + 1
(v′ − v), (11)

where w = (v · v′). The spectator quark contribution factors out in all decay
matrix elements. They have a common factor

√

εs(p) + ms

2εs(p)

√

εs(q) + ms

2εs(q)

[

1 −
√

w − 1

w + 1

(

√

p2

εs(p) + ms

+

√

q2

εs(q) + ms

)

+

√

p2
√

q2

[εs(q) + ms][εs(p) + ms]

]

=

√

2

w + 1
Is(p, q).(12)

If the δ-function is used to express q through p or p through q then Is(p, q) =
Is(p) or Is(p, q) = Is(q) with

Is(p) =

√

wεs(p) −
√

w2 − 1
√

p2

εs(p)
×

×θ

(

√

εs(p) − ms −
√

w − 1

w + 1

√

εs(p) + ms

)
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+
ms

√

εs(p)[wεs(p) −
√

w2 − 1
√

p2]
×

×θ

(

√

w − 1

w + 1

√

εs(p) + ms −
√

εs(p) − ms

)

.

The weak current matrix elements, e.g., for the scalar to axial vector
diquark transition (bc → cc) have the following covariant decomposition

〈AV (v′, ε′)|JV
µ |S(v)〉√

MAV MS

= ihV (w)εµαβγε
′∗αv′βvγ, (13)

〈AV (v′, ε′)|JA
µ |S(v)〉√

MAV MS

= hA1
(w)(w + 1)ε′∗µ

− hA2
(w)(v · ε′∗)vµ − hA3

(v · ε′∗)v′

µ. (14)

These transition form factors are expressed through the overlap integrals of
the diquark wave functions and are given in Ref. [7]. These exact expressions
for diquark form factors were obtained without any assumptions about the
spectator and active quark masses. For the heavy diquark system we can ap-
ply the v/c expansion. Then in the nonrelativistic limit we get the following
expressions for the form factors

hV (w) = [1 + (w + 1)f(w)]F (w),
hA1

(w) = hA3
(w) = [1 + (w − 1)f(w)]F (w),

hA2
(w) = −2f(w)F (w), (15)

where

F (w) =

√

1

w(w + 1)

(

1 +
ma

√

m2
a + (w2 − 1)m2

s

)1/2

×
∫

d3p

(2π)3
Φ̄F

(

p +
2ms

w + 1
(v′ − v)

)

ΦI(p) (16)

and
f(w) =

ms
√

m2
a + (w2 − 1)m2

s + ma

. (17)

The appearance of the terms proportional to the function f(w) is the result
of the account of the spectator quark recoil. Their contribution is important
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and distinguishes our approach from the previous considerations [8, 9]. We
plot the function F (w) for bb → bc and bc → cc diquark transitions in Fig. 5.
The function F (w) falls off rather rapidly, especially for the bb → bc diquark
transition where the spectator quark is the b quark. Such a decrease is the
consequence of the large mass of the spectator quark and the high recoil
momentum (qmax ≈ mb − mc ∼ 3.33 GeV) transfered.
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Figure 5: The function F (w) for the bb → bc (left) and bc → cc (right) quark
transitions.

The second step in studying weak transitions of doubly heavy baryons
is the inclusion of the spectator light quark in the consideration. We carry
out all further calculations in the limit of an infinitely heavy diquark, Md →
∞, treating the light quark relativistically. The transition matrix element
between doubly heavy baryon states in the quark-diquark approximation (see
Figs. 3 and 4) is given by [cf. Eqs. (5) and (6)]

〈B′(Q)|JW
µ |B(P )〉

2
√

MIMF

=

∫

d3p d3q

(2π)3
Ψ̄B′,Q(q)〈d′(Q)|JW

µ |d(P )〉×

× ΨB,P (p)δ3(pq − qq), (18)

where ΨB,P (p) is the doubly heavy baryon wave function; p and q are the
relative quark-diquark momenta. The baryon ground-state wave function
ΨB,P (p) is a product of the spin-independent part ΨB(p) satisfying the related
quasipotential equation (1) and the spin part UB(v)

ΨB,P (p) = ΨB(p)UB(v). (19)
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The baryon spin wave function UB is constructed from the Dirac spinor
uq(v) of the light spectator quark and the diquark spin wave function. The
ground state spin 1/2 baryons can contain either the scalar or axial vector
diquark. The former baryon is denoted by Ξ′

QQ′ and the latter one by ΞQQ′.
The ground state spin 3/2 baryon can be formed only from the axial vector
diquark and is denoted by Ξ∗

QQ′.
The amplitude for the Ξ′

QQs
→ ΞQ′Qs

transition in the infinitely heavy
diquark limit is given by the following expression

〈ΞQ′Qs
(v′)|JW

µ |Ξ′

QQs
(v)〉

2
√

MIMF

=
i√
3
[ihV (w)εµαβγv

′βvγ (20)

−gµαhA1
(w + 1) + vµvαhA2

(w) + v′

µvαhA3
(w)] ×

×ŪΞQ′Qs
(v′)γ5(γ

α + v′α)UΞ′

QQs
(v)η(w), (21)

where η(w) is the heavy diquark – light quark Isgur-Wise function which is
determined by the dynamics of the light spectator quark q

η(w) =

√

2

w + 1

∫

d3p d3q

(2π)3
Ψ̄B(q)ΨB(p)Iq(p, q)

×δ3

(

p − q +
εq(p) + εq(q)

w + 1
(v′ − v)

)

. (22)

We plot the Isgur-Wise function η(w) in Fig. 6. In the nonrelativistic limit
for heavy quarks the diquark form factors hi(w) contain the common factor
F (w)η(w).

Our results for the semileptonic de-

Figure 6: The Isgur-Wise func-
tion η(w) of the light quark –
heavy diquark bound system.

cay rates of doubly heavy baryons Ξbb

and Ξbc are compared with previous pre-
dictions in Table 1. The results of differ-
ent approaches differ substantially. Most
of previous papers [10, 9, 11] give their
predictions only for selected decay rates.
Their values agree with our in the or-
der of magnitude. Our predictions are
smaller than the QCD sum rule results
[11] by a factor of ∼ 2. This can be a re-
sult of our treatment of the heavy spec-

tator quark recoil in the heavy diquark. On the other hand the authors of
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Table 1: Semileptonic decay rates of doubly heavy baryons Ξbb and Ξbc (in
×10−14 GeV).

Decay our Ref.[12] Ref.[9] Ref.[11] Ref.[10]
Ξbb → Ξ′

bc 1.64 4.28
Ξbb → Ξbc 3.26 28.5 8.99
Ξbb → Ξ∗

bc 1.05 27.2 2.70
Ξ∗

bb → Ξ′

bc 1.63 8.57
Ξ∗

bb → Ξbc 0.55 52.0
Ξ∗

bb → Ξ∗

bc 3.83 12.9
Ξ′

bc → Ξcc 1.76 7.76
Ξ′

bc → Ξ∗

cc 3.40 28.8
Ξbc → Ξcc 4.59 8.93 4.0 8.87 0.8
Ξbc → Ξ∗

cc 1.43 14.1 1.2 2.66
Ξ∗

bc → Ξcc 0.75 27.5
Ξ∗

bc → Ξ∗

cc 5.37 17.2

Ref. [12] using for calculations the Bethe-Salpeter equation give more decay
channels. Their results are substantially higher than ours, for some decays
the difference reaches almost two orders of magnitude which seems quite
strange. E.g., for the sum of the semileptonic decays Ξbb → Ξ

(′,∗)
bc Ref. [12]

predicts ∼ 6 × 10−13 GeV which almost saturates the estimate of the total
decay rate Γtotal

Ξbb
∼ (8.3 ± 0.3) × 10−13 GeV [13] and thus is unlikely.
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