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Abstract

In this work we calculate pomeron flux in the single diffraction pro-

cesses. We consider two models: quasi-eikonal model and low constituent

model. Both models give the pictures different from the traditional three-

reggeon model. Successive developing of modeles gives some indications,

that the low constituent model is more attractive.

1 Introduction

Regge non-enhanced phenomenology well describes total and elastic cross-sections
in the Donnachie-Landshoff parametrization [1], see figures in [3] and [2].

Low-energy single diffraction data is also well described by regge phenomenol-
ogy with supercritical pomeron, but at the region of Tevatron energies it fails
to describe data on single diffraction dissociation. The main problem is that
total single diffraction cross-section rise considerably weaker than it is predicted
by Y -like Regge diagrams involving only three pomerons. This fact was clearly
stated by Goulianos, see [7] and references within.

Many ways were suggested to solve this problem. First way is two-variant
(Ref.[7] and Ref.[8]) pomeron flux renormalization model, where we consider the
equation for cross section of single diffraction

d3σ

dM2dt
= fIP/p(x, t)σIPp(s) (1)

and pick out the factor, named as ’pomeron flux’

fIP/p(x, t) = Kξ1−2αIP (t)) (2)

Renormalization of the pomeron flux is made by intserting dependence of K
either on s (as in Ref.[7]) either on x,t, as in Ref.[8]. This phenomenologi-
cal approach well describes CDF data on single diffraction, but we need more
theoretical bases for extrapolation to higher energies.
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The second way is straight-forward account of screening corrections (Ref.[6]
and Ref.[9]). This way seems to be more natural, but we need to introduce ad-
ditional parameters and make some assumptions about Regge diagram technics.
In Ref.[6] and Ref.[9] only some parts of sufficient diagrams were accounted by
going to the impact parameter space b and replacement initial ”Borhn” factor

χ(s, b) to eikonalized amplitude (1 − e−µχ(s,b)). In addiction, the central Y -
like diagram was modified to account low-energy processes and in Ref.[9] the
dependence of pomeron intercept on energy was introduced.

As compared with Ref.[6] and Ref.[9] we successivly consider all non-enhanced
diagrams.

In this work we also consider low constituent model, where there is only
basic quark-gluon states and interactions. This model leads us to the non-local
pomeron, but it has clear interpretation of the pomeron flux.

2 Quasi-eikonal model

Quasi-eikonal model, considered in this work, is standart enough. We use
reggeon diagram technic with reggeon propogator sα(t), model gauss vertexes of
the interaction of n pomerons with hadron

Nh(k1, .., kn) = gh(ghch)n−1exp

(

−R2
h

n
∑

i=1

k2
i

)

(3)

and the vertex corresponding to the transition of l pomerons into m pomerons
under the π -meson exchange dominance assumption

Λ(k1, .., km) = r(gπcπ)m−3exp

(

−R2
r

m
∑

i=1

k2
i

)

. (4)

Here gh is the pomeron-hadron coupling, ch is the corresponding shower en-
hancement coefficient, Rh and Rr are the radii of the pomeron-hadron and
pomeron-pomeron interactions, respectively, ki are the pomeron transverse mo-
menta. Integration on the pomeron momenta is made trivial in the impact
parameter space represenztation and we only have to sum on then nubmers of
pomerons, attached to the same vertexes.

As compared with Ref.[6] and Ref.[9], where only part of sufficient diagrams
was accounted ( see Fig. 1a), in this paper we account all non-enhanced ab-
sorptive corrections to the Y-diagram contribution, shown in Fig.1b.

Because low-energy corrections rapidly decrease with energy, we account
only pomeron contributions, but in all sufficient diagrams, as it was done in
Ref.[10] and Ref.[11]. It gives us possibility to normalize cross-section of the
single diffraction to CDF data and make theoreticaly based predictions for cross-
section of the single diffraction at LHC energies.

The contribution fn1n2n3n4n5 of each diagram in Fig.1b can be written in a
rather simple form
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Figure 1: Regge diagrams describing single diffraction dissociation of particle b.

fn1n2n3n4n5 = (−1)n1+n2+n3+n4+n5+1

n1!n2!n3!n4!n5!
8π3r

c2
acbgπcπ

×
[

gacagπcπe∆(Y −y)

8π(R2
a+R2

π+α′(Y −y))

]n1+n2

×
[

gacagbcbe∆Y

8π(R2
a+R2

b
+α′Y )

]n4+n5 [
gbcbgπcπe∆y

8π(R2
b
+R2

π+α′y)

]n3

× 1
detF e−t c

detF

detF = a1a2a3 + a1a3a5 + a1a2a5 + a1a2a4

+a2a3a4 + a1a4a5 + a3a4a5 + a2a4a5

c = a2a3 + a1a5 + a3a5 + a2a5 + a1a3 + a1a4 + a3a4 + a2a4

a1 = n1

R2
a+R2

π+α′(Y −y) ; a2 = n2

R2
a+R2

π+α′(Y −y) ; a3 = n3

R2
b
+R2

π+α′y

a4 = n4

R2
a+R2

b
+α′Y

; a5 = n5

R2
a+R2

b
+α′Y

Here Y = ln(s) y = ln(M2). Then inclusive cross section is

(2π)32E
d3σ

dp3
= π

s

M2

∞
∑

n1,n2,n3=1

∞
∑

n4,n5=0

fn1n2n3n4n5 (5)

Our method differs from early work Ref. [11], where all parameters but
vertex r were fixed. In this work here we vary all parameters. Parameters
were varied with natural limitations, i.e. all parameters were varied above its
conventional values. We don‘t consider very high or very low values of pomeron
itercept and slope, which can be compensated by other parameters.

Another difference as compared with Ref.[11] is the fact, that we use data on
total and elestic (differential) cross-sections and data on total single-diffraction
cross-sections. So, we can fix parameters of the model with higher precision and
with account of its one-to-one corellations.

The model under consideration doesn‘t include possible contributions of low-
lying reggeons, so we limit considered energies by

√
s > 52GeV for elastic
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and total cross-sections. As was shown in [13], modern data don‘t give us
possibility to distinct simple ploe model with total cross-sections σtot = As∆

and eikonaliezed models with σtot = C + Dln(s) or σtot = E + F ln(s)2. But we
can reliably determine parameters of the model Rh, gh, ∆, α′ from elastic and
total cross-section data at fixing ch.

We use CDF data on single diffraction for analysis.
CDF data [4] was presented as a result of the monte-carlo simulations based

on the general formula:

d2σ
dξdt = 1

2

[

D
ξ1+ε e(b0 − 2α′

SD ln ξ)t + Iξγeb
′t
]

ξ ≡ 1 − x
(6)

Taken CDF data is shown in Table 1.

Table 1: CDF fit-parameters from reference [1].

√
s = 546 GeV

√
s = 1800 GeV

D 3.53± 0.35 2.54± 0.43
b0 7.7 ± 0.6 4.2 ± 0.5

α′
SD 0.25± 0.02 0.25± 0.02
ε 0.121± 0.011 0.103± 0.017
I 537+498

−280 162+160
−85

γ 0.71± 0.22 0.1 ± 0.16
b′ 10.2± 1.5 7.3 ± 1.0

This parameters are experimental points tested in our model. Let‘s mark,
that low-lying reggeons contribution, corresponding to second addendum in
(6), isn‘t acconted in our calculations and we have to model only parameters
D,b0,α

′
SD,ε. We calculate this parameters in the region

0.05 < t < 0.1; 0.99 < x < 0.995 ,

where we have the most reliable CDF data and contribution of the low-lying
reggeons is mnimal.

We have to mark, that this data is not precise because of the following
reasons:

1. CDF single diffraction data have low statistcs and narrow kinematical
region, where the data was taken;

2. At each energy (
√

s = 546GeV
√

s = 1800GeV ) 6 highly correlated
parameters are introduced, and it makes calculations unstable;
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3. Fixing of effective pomeron slope on the common value α′
SD = 0.25 is

obliged.

Unreability of the data in Table1 is cearly seen from analysis of dependence
of D on energy from

√
s = 546GeV to

√
s = 1800GeV . As defined [4],

D = G(0)s∆ (7)

here G(0) doesn‘t depend on s, and ∆ > 0. In accordance with this definition,
parameter D must increase when energy increases, but in CDF data it decreases.

Total single diffraction cross-sections are well experimentally defined and
don‘t depend on the model, used in analysis of basic data (detectors counts)

σSD(
√

s = 546GeV ) = 7.89± 0.33mb
σSD(

√
s = 1800GeV ) = 9.46± 0.44mb

(8)

We include these two points in χ2 test, but with larger weights, than points
shown in Table 1.

Because total and elastic cross sections, on one side, and single diffraction
cross sections, on other side, have different types, we vary parameters r,Rπ and
cπ to achieve the best agreement with data in Table1 and data (8), fixing at
each step parameters ∆,α′,gh and Rh from total and elastic cross-sections.

Results. In the end of optimization process we‘ve got next parameter set:
g2

p = 75.0538, ∆ = 0.0868089, R2
p = 1.94755, α′ = 0.148963, c2

p = 2.03954,
r = 0.111525, R2

π = 0.173682, c2
π = 6.00989

Following total single diffraction cross sections were calculated at these pa-
rameters:

σSD(
√

s = 546GeV ) = 7.5mb
σSD(

√
s = 1800GeV ) = 10mb

(9)

Corresponding differential characteristics of differential single diffraction cross
sections are enumerated in Table 2:

Calculated differential characteristics are very close to ones from the triple-
pomerom model, so the following relation is satisfied

d3σ

dM2dt
= fIP/p(x, t)σIPp(s) (10)

where
fIP/p(x, t) = K(s)ξ1−2αIP (t)) (11)

is renormalized pomeron flux. As compared with standart triple-pomeron model
the dependence of factor K on ernergy s is introduced. This dependence pro-
vides slowing on the rise of the single diffraction cross section with energy.

Dependence of renormalizing factor K(s) on energy is shown on Fig.2.
We have to note, that we have inconsistences that calculating cp. From one

side, there are theoretical indications, that cp > 1. Such high values of cp lead
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Table 2: Differential characteristics of differential single diffraction cross sections
in our model.

√
s = 546 GeV

√
s = 1800 GeV

D 2.9628 3.08731
b0 5.32553 5.27187

α′
SD 0.294999 0.270871
ε 0.0580572 0.0549202
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Figure 2: Dependence of renormalizing factor K(s) on energy.

to significant divergence of dependence dσ
dt on t from exponential behavior e−bt

already at t∼0.2GeV 2. It is known from experiment, that elastic cross-section
falls exponentially on t up to t∼1GeV 2. This inconsistence is clearly seen from
Fig.3.

From this fact of independence of logarithmic slope on t we conclude, that
cp << 1. To explain slow rise of σSD with energy we have to assume very high

cπ, cπcp � 1 at gπ ∼ gp. It gives desired value of the fraction σ(
√

s=1800GeV )
σ(

√
s=546GeV )

∼ 1.2,

but leads to very high values of logarithmic slope b ∼ 50GeV −2 (situation will
be even more worse, than in the case of elastic cross-section, shown on Fig.3).
Solving of this problem by precise adaptation of Rπ is unusable, because it leads
to highly differing from experiment and depended on M 2 and t values of α′ and
ε.

At cp > 1 we don‘t need cπ in so high values, and logarithmic slope b is back
to values about ones, not tens. So, we must return to the theoretically based
area cp > 1 and limit considered area of elastic scattering by t < 0.2GeV 2.
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Figure 3: Elastic cross sections dσ
dt for reaction p+ p → p+ p. Theoretical curve

is at energy
√

s = 1800GeV . Experimental points are taken at energies from
ISR to Tevatron.

We see, that goog agreement of quasi-eikonal model with experiment is
achieved on the border of the allowed region of parameters [cp, cπ] (see. Fig.4).

From one side, it gives stability of the calculated parameters. From the
other side this model has no reserve of stability. If fraction of the cross sections
σ(

√
s=1800GeV )

σ(
√

s=546GeV )
will be defined more precisely and will be found in the region

1.1 ÷ 1.15 (it is minimal value, which is consistent with existed data), then for
description of this data we will be obliged to decline either describing elastic
and total cross sections or describing logarithmic slope of the single diffraction
on t.

3 Low constituent model

We consider the three-stage model of hadron interaction at the high energies.
On the first stage before the collision there is a small number of partons

in hadrons. Their number, basically, coinsides with number of valent quarks
and slow increases with the rise of energy owing to the appearance of the bre-
asstralung gluons.

On the second stage the hadron interaction is carried out by gluon exchange
between the valent quarks and initial (bremsstralung) gluons and the hadrons
gain the colour charge.

On the third step after the interaction the colour hadrons fly away and when
the distance between them becomes more than the confinement radius rc, the
lines of the colour electric field gather into the tube of the radius rc. This tube
breaks out into the secondary hadrons.

Because the process of the secondary harons production from colour tube
goes with the probability 1, module square of the inelastic amplitudes corre-
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