
Parquet Approximation for Two–Matrix

Model

Iskander Ziyatdinov∗

Department of Physics, Moscow State University,

Moscow, 119992, Russia

Abstract

The parquet planar approach is reviewed and applied to the zero-

dimensional two-matrix model.

As it can be seen from the title, the parquet planar approximation is
constructed on the base of two different approaches. To begin I would like
to recall some general ideas that underline both of them.

The parquet approximation or generalized ladder approximation was pro-
posed by Landau, Khalatnikov, Abrikosov, as a tool for describing QED [1].
The parquet approximation can be defined as a solution of a certain closed
set of integro-differential equations on propagators and vertex functions, and
all other structures of the theory (e.g. Green functions) are constructed in
terms of this solution. The main characteristic feature of this set is that it
has sense for both small and large values of the coupling constant. Later on,
this approximation was applied to different models (meson–meson scattering,
four-fermion interaction) [2].

The planar approximation is based on the observation that in some matrix
field theories, e.g. the gauge theory with SU(N) gauge group, the perturba-
tion theory can be constructed with 1/N as a small parameter, and in the
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limit of large N the main contribution is the diagrams that can be depicted
on the plane without self-intersection [3].

Both approaches have advantages and disadvantages. For example, the
parquet approximation, unlike the planar one, violates the gauge symmetry
preventing so its direct application for gauge theories. At the same time the
planar approximation is very difficult to analyze in spaces with large dimen-
sions, while the parquet approximation is independent of the dimensionality
of the space.

So the hope when constructing the parquet planar approximation is to
propose a method that would combine pro and take into account contra of
both approaches.

1. The parquet planar approximation in its first form was proposed in
[5]. They considered a so-called hermitian one matrix model with the action

S(M) =
1

2
TrM2 +

g

4N
Tr M4.

Note that the theory is considered in the zero-dimensional space-time.
This model, as all polynomial matrix models, has deep connections with

many problems in physics and mathematics (2D gravity, exactly solvable
models).

Defining the Green functions as follows

Πn = < Tr Mn >≡ lim
N→∞

N
1

N1+n/2

∫

DMTrMn e−S(M),

one can show that they satisfy the planar Schwinger–Dyson equations of the
form

Πn + gΠn+2 =
n−2
∑

i=0

ΠiΠn−i−2, n ≥ 2.

They form an infinite chain, and it can easily be shown that the whole set
of the Green functions is derived in terms of the generating functional that
depends on an additional free parameter. As such a parameter one can take,
for example, Π2 or Π4, therefore, to define it one should have one additional
condition. Hence, there exists a certain way to control approximations.

The parquet planar approximation is defined as a solution of the following
system















Π2 = 1 − 2gΠ2
2 − gΠ4

2Γ4 = 1 − gΠ4

Γ4 = −g + H + V
H = −gΠ2

2Γ4 + V Π2
2Γ4

V = −gΠ2
2Γ4 + HΠ2

2Γ4

(1)
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here Γ4 is the four-point vertex, H (V ) is the part of the four-point ver-
tex function that contains diagrams 2PR in the t-channel (s-channel) and
not 2PR in the s-channel (t-channel). The vertices V and H are related by
the cyclic permutation of external points. The first equation of (1) is the
Schwinger–Dyson equation, the others are called parquet. So one can repre-
sent the parquet planar approximation as a way to close or cut the infinite
Schwinger–Dyson chain and to write down the aforementioned additional
condition.

The equations (1) can be represented graphically.
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Here notations are as follows

= Π2 , = 1 , |@
@
�

�
= Γ4

= H , = V

The thick and thin lines represent the full and bare within the planar parquet
approximation propagators respectively.

From the figures it can be seen why the method is called parquet planar:
it is called parquet since diagrams that are taken into account form a parquet,
and planar since non-planar contributions from the u-channel are omitted.

In the zero-dimensional case this system is purely algebraic, and its so-
lution reproduces with perfect precision the exact planar results [4] as it is
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seen from the table below.

Planar Parquet Planar
Π2(g) at small g 1 − 8g + o(g) 1 − 8g + o(g)
Π2(g) at large g 0.7698g−1/2 0.7695g−1/2

gcritical −0.083 −0.084

2. The next important class of hermitian matrix models are two-matrix
models [7, 8]. The simplest model is the model with the action

S(M1, M2) = Tr M2
1 +

g

N
TrM4

1 + Tr M2
2 +

g

N
TrM4

2 − 2cTr M1M2.

This model in the large N limit together with all mentioned above has
much in common with the Ising model on random lattices [6]. The more
subtle consequence of the two-matrix model is that this technique can be
used to construct the 1D matrix model or matrix quantum mechanics in an
indirect way.

The partition function is defined in the usual way

Z =

∫

DM1 DM2 e−S(M1,M2)

= const

∫ N
∏

i=1

dxidyi∆(xi)∆(yi)e
−S(xi,yi),

∆(xi) =
N
∏

i<j=1

(xi − xj)
2,

here M1 and M2 have been diagonalized to X = ‖xi‖ and Y = ‖yi‖.
The usual way to investigate matrix models, especially useful in the case

of the two-matrix model, is the orthogonal polynomials technique [8]. One
introduces the orthogonal or biorthogonal polynomials Pi(x)

∞
∫

−∞

Pi(x)Pj(y)e−S(x,y) dxdy = hiδij,

S(x, y) = x2 +
gx4

N
+ y2 +

gy4

N
− 2cxy.

These polynomials satisfy the recursion formula

xPi(x) = Pi+1(x) + RiPi−1(x) + TiPi−3(x),
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whence it is possible to derive the set of equations on Ri, Ti, and fi ≡ hi/hi−1















































fi =
cRi

1 +
2g

N
(Ri+1 + Ri + Ri−1)

cfi = −i/2 + Ri

(

1 +
2g

N
(Ri+1 + Ri + Ri−1)

)

+
2g

N
(Ti+2 + Ti+1 + Ti)

cTi =
2g

N
fifi−1fi−2

(2)

In the large N limit one introduces continuous functions

i

N
→ x ∈ [0, 1],

fi

N
→ f(x),

Ri

N
→ R(x),

Ti

N2
→ T (x),

while the set (2) turns into







f(x) = cR(x)(1 + 6gR(x))−1

cf(x) = −x/2 + R(x)(1 + 6gR(x)) + 6gT (x)
cT (x) = 2gf 3(x)

Now the partition function will be

ln Z = ln

(

const

N−1
∏

i=0

hi

)

→ const +

1
∫

0

(1 − x) ln f(x)dx.

One can calculate the 2-point correlation function D1 = < M2
1 >≡<

M2
2 > = D2

D1 = lim
N→∞

N

∫

dM1 dM2 Tr M2
1 exp(−S(M1, M2))

= f(0) + 2

1
∫

0

(1 − x)f ′(x)dx.

Then its asymptotic behavior is defined by the following expression

D1 =
1

2(1 − c2)
−

g(1 + c2)

(1 − c2)3
+

g2(3c2 + 9)(2c2 + 1)

2(1 − c2)5
+ O(g3). (3)
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3. The parquet planar approximation for the two-matrix model is defined
as a solution of the following set of equations.

The first four equations are















D1 = 1 − 8gD2
1 − 4gD4

1Γ1 + cΠ2

D2 = 1 − 8gD2
2 − 4gD4

2Γ2 + cΠ2

Π2 = cD1 − 8gD2Π2

Π2 = cD2 − 8gD1Π2

(4)

These equations are the Schwinger–Dyson equations on both propaga-
tors D1 =< Tr M2

1 >, D2 =< Tr M2
2 > and the effective vertex Π2 =<

Tr M1M2 > that describes the transformation of matrix fields one into an-
other; Γ1 and Γ2 are four-point vertices for both matrix fields; by definition
mixed vertices are not considered. The vertices Γ1 and Γ2 are defined by the
following parquet planar equations































Γ1 = −4g + H1 + V1

H1 = −4gD2
1Γ1 + V1D

2
1Γ1

V1 = −4gD2
1Γ1 + H1D

2
1Γ1

Γ2 = −4g + H2 + V2

H2 = −4gD2
2Γ2 + V2D

2
2Γ2

V2 = −4gD2
2Γ2 + H2D

2
2Γ2

(5)

This set (4) and (5) can be solved in limit of small g. The asymptotic
expression for the two-point Green function is

D1,2 =
1

2(1 − c2)
−

g(1 + c2)

(1 − c2)3
+

g2(2c2 + 1)(2c2 + 9)

2(1 − c2)5
+ O(g3), (6)

and it behaves similarly to the planar case (3).
It is possible to derive an equation solely on D1, g, and c. This equation

of the 8th order in D1 defines D1 as the function of the coupling constants.
Its graph has two sheets in the physically interesting domain, that is 0 ≤ c ≤
1. These two sheets correspond to different phases of the model, while the
transition from one sheet to another is associated with a phase transition.

Note that setting c equal to zero, i.e. when there are two non-interacting
theories, one gets the usual solution for the one-matrix model considered in
[5].

4. To conclude, let us list possible consequences and generalizations.
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First, this model admits direct generalization for the case of several matri-
ces with chain interaction

∑p−1
i=1 ciTr MiMi+1, so-called multi-matrix models

[9]. It is interesting to investigate its solution or at least the behavior of this
solution in the limit p → ∞. It should give the matrix quantum mechanics
[10].

The second point is that so far the parquet approximation has been ap-
plied to the planar or spherical limit, i.e. the large N limit. It is interesting to
know if it is possible to consider cases with general topology. In other words,
the question is whether it is possible to formulate the parquet approximation
in the double-scaling limit.

It is necessary to mention that the parquet approach does not contain
any parameter that could control this approximation1. Hence, one should
not pretend to get the complete solution using the parquet approximation,
it is merely a tool for investigating some properties (e.g. critical constants,
the behavior of solutions).

Acknowledgments

I would like to thank I.Ya. Aref’eva for stimulating discussions. I am
grateful to the organizers of ”Quarks-2004” for the hospitality.

This work is supported by RFBR grant 02-01-00695 and RFBR grant for
leading scientific schools.

References

[1] L.D. Landau, A.A. Abrikosov, I.M. Khalatnikov, Dokl. Acad. Nauk, 95
(1954) 497, 773, 1177;

L.D. Landau, in: Niels Bohr and the Development of Physics, Ed.
W.Pauli. — New York: Mc Grow-Hill, 1955;

[2] I.T. Dyatlov, V.V. Sudakov, K.A. Ter-Martirosyan, Asymptotic meson–

meson dispersion theory, Sov. Phys. JETP, 4 (1957) 767;

A.A. Abrikosov, A.D. Galanin, L.P. Gorkov, L.D. Landau, I.Ya. Po-
meranchuk and K.A. Ter-Martirosyan, Possibility of formulation of a

theory of strongly interacting fermions, Phys. Rev., 111 (1958) 321;

1The aforementioned extra parameter and additional condition do not seem appropriate

for the case.

7



K.A. Ter-Martirosyan, Equation for vertex part corresponding to

fermion—fermion scattering, Phys. Rev., 111 (1958) 948;

Yu.M. Makeenko, K.A. Ter-Martirosyan, A.B. Zamolodchikov, On The

Theory Of The Direct Four-Fermion Interaction, Sov. Phys. JETP, 44
(1976) 11;

[3] G.’t Hooft, A planar diagram theory strong interactions, Nucl.Phys. B,
72 (1974) 461;
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