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Abstract

It has been proved that in noncommutative theory the cyclicity of

the vacuum state leads to irreducibility of the field operators set as

well as in commutative case. The validity of Reeh-Schlieder theorem

has been demonstrated.

1 Introduction

The axiomatic approach to quantum field theory (QFT) built up by Wight-
man, Jost, Bogoliubov, Haag and others made QFT a consistent, rigorous
theory (for references, see [1]-[4]). In the framework of this approach, fun-
damental results, as the CPT and spin-statistics theorems were proven. In
addition, the axiomatic formulation of QFT has given the possibility to derive
analytical properties of scattering amplitudes and, as a result, dispersion re-
lations. Consequently, various rigorous bounds on the high-energy behaviour
of scattering amplitudes were obtained.
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At present, noncommutative quantum field theory (NC QFT) attracts a
great deal of attention. The study of such theories has got a considerable
impetus after it was shown that they appear naturally, in some cases, as
low-energy effective limits of open string theory in the presence of a constant
antisymmetric background field [5]. In this context, the coordinate operators
of a noncommutative space-time satisfy the commutation relations

[x̂µ, x̂ν ] = iθµν , (1)

where θµν is a constant antisymmetric matrix of dimension (length)2.
The implications of the modern ideas of noncommutative geometry [6]

in physics have been lately of great interest, though attempts can be traced
back as far as 1947 [7]. Plausible new arguments for studying NC QFT have
been offered in [5, 8] (for a review, see [9]).

We first shall consider the case of space-space noncommutativity, i.e.
θ0i = 0, since theories with space-time noncommutativity can be obtained
as low-energy effective limits from string theory only in special cases [10].
Besides, there are problems with unitarity [11] and causality [12, 13] in the
general case.

Up to the present time, the study of NC QFT has been mostly done in
the Lagrangian approach (for a review, see [9]). However, it is of importance
to develop also an axiomatic formulation of NC QFT, which does not refer
to a specific Lagrangian.

The first step in this direction was made in [14]. Wightman functions
approach was developed in NC QFT in [15] - [17]. In [14] - [17] the case of
space-space NC theory was considered.

As our formulation is based on the description of NC QFT in terms of
Wightman functions let us recall the essence of this construction in commu-
tative case. For simplicity we consider the case of scalar Hermitian field, a
complex field can be treated by the similar way.

Vacuum vector |0〉 ≡ Ψ0 is the cyclic vector for polynomial algebra of
interacting fields operators ϕ (x). That is every vector, belonging to the
space in question H, can be approximated by the vectors of a type

Ψ = ϕ(x1) ϕ(x2)...ϕ(xn) Ψ0 (2)

with an arbitrary accuracy. For two arbitrary basic vectors

Ξ = ϕ(xj)...ϕ(x1) Ψ0 and Ψ = ϕ(xj+1)...ϕ(xn) Ψ0
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we have

〈Ξ, Ψ 〉 = 〈Ψ0, ϕ(x1)...ϕ(xn) Ψ0 〉 ≡ W (x1, x2, ..., xn). (3)

It is evident that every scalar product in H is approximated by linear com-
binations of Wightman functions with an arbitrary accuracy.

Let us proceed to noncommutative field theory.
In the case of θ0i = 0, choosing the coordinate system so that θ3i = 0,

only the component θ12 = −θ21 = θ is nonzero. Thus in this case we have
two commutative variables x0 and x3 and two noncommutative ones - x̂1 and
x̂2. As before we admit that Ψ0 is a cyclic vector, but now we consider the
vectors of the type

Ψ = ϕ(x̂1) ϕ(x̂2)...ϕ(x̂n)|0〉. (4)

Only for simplicity we treat ϕ (x̂) in such a way if it were a local operator. As
in commutative case we can make our consideration rigorous by substitution:
ϕ (x̂) → ϕf ≡

∫
ϕ (x̂) f(x̂) d x̂, f(x̂) is a test function.

Let us recall that in commutative case we have the following local com-
mutativity condition:

[ϕ (x), ϕ (y)] = 0, if (x − y)2
< 0. (5)

The existence of two commutative coordinates x0 and x3 gives the possi-
bility to substitute condition (5) by the following one [19]:

[ϕ (x̂), ϕ (ŷ)] = 0, if (x0 − y0)
2 − (x3 − y3)

2
< 0. (6)

It is well-known that condition (5) plays the crucial role in proving of such
results as CPT-theorem, spin-statistic theorem [1] - [3] as well as analytical
properties of scattering amplitude. In noncommutative theory condition (6)
(or its generalization) plays the same role [14] -[17], [20] - [24]. However,
some important general results in usual QFT were obtained without use of
condition (5), they are the consequences of spectral properties of Wightman
functions only. On this ground the irreducibility of the set of field operators
has been proved [1, 2]. These spectral properties lead to the analyticity of
Wightman functions in tubes [1] - [3], which in its turn is the basis of the
derivation of Reeh-Schlieder theorem. In accordance with this theorem the
set of Wightman functions is ”almost defined” by the corresponding set of
Wightman function, in which all xi belong to arbitrary open domain O.
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In this report we concentrate our efforts on results in noncommutative
theory based on spectral properties of Wightman function. We show that as
well as in commutative case the set of field operators is irreducible one if the
vacuum vector is a cyclic one. We also obtain the noncommutative analog
of Reeh-Schlieder theorem [18].

2 Irreducibility of the Field Operators Set

First let us recall that in commutative case spectral property can be expressed
as follows:

W (P1, ...Pn−1) =

=
1

(2π)2 (n−1)

∫
ei Pj ξj W (ξ1, ...ξn−1) d ξ1...d ξn−1 6= 0 (7)

only if Pi ∈ V̄ + ∀ i, i.e. if P 0
i ≥ |~Pi|. This condition is the consequence of

the fact that there are no tachyons in the set of basic vectors. This condition
leads immediately to the analyticity of Wightman functions in the tube T−

n

that is in the domain νi = ξi − i ηi, ηi ∈ V̄ +, ξi ∈ IR, ξi ≡ xi − xi+1. Owing
to translation invariance W (x1, x2, ..., xn) = W (ξ1, ..., ξn−1).

Proceeding to noncommutative case we first consider the case of space-
space noncommutativity. In this case we have the analogous condition with
the only difference that integration has to be taken only over commutative
coordinates ξ0

i and ξ3
i . The condition for Pi is changed respectively: the

integral in (7) is not zero only if Pi ∈ V̄ +
2 , that is if P 0

i > |P 3
i | as we assume

that all basic vectors belong to V̄ +
2 .

This condition leads immediately to the analyticity of noncommutative
Wightman functions in the tube T−

n . Here T−
n is the tube in respect to com-

mutative coordinates.
In commutative case spectral property is the consequence of the condition

[1, Ch. 2] ∫
d a ei p a 〈Φ, U (a) Ψ〉 6= 0, only if p ∈ V̄ +, (8)

Φ and Ψ are arbitrary vectors, U (a) is a translation operator.
In noncommutative case we have the same condition, but now p ∈ V̄ +

2 , a

is a translation of commutative variables.
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Let us remind the criterion of irreducibility. As ϕ (x̂)is an unbounded
operator, a proper definition of irreducibility would be:
Definition. The set of operators ϕ (x̂i) is irreducible if any bounded
operator A, which commutes with all field operators

[A, ϕ (x̂)] = 0, ∀ x̂ (9)

is the following:
A = C II, C ∈ IC, (10)

II is an identical operator.
To prove the irreducibility of the set of operators in question we consider

the expression
〈Ψ0, A U (a) ϕ(x̂1) ϕ(x̂2)...ϕ(x̂n) Ψ0〉.

Using translation invariance of Ψ0 and condition (9), we can write the chain
of equalities:

〈Ψ0, A U (a) ϕ(x̂1) ϕ(x̂2)...ϕ(x̂n) Ψ0〉 =

= 〈Ψ0, ϕ (x̂1 + a) · · ·ϕ (x̂n + a) A Ψ0〉 =

= 〈ϕ (x̂n) · · ·ϕ (x̂1), U (−a) A Ψ0〉. (11)

Let us remind that ϕ (x̂i) is a Hermitian operator, a is a translation in respect
to commutative variables. So

〈A+ Ψ0, U (a) ϕ(x̂1) ...ϕ(x̂n) Ψ0〉 = 〈ϕ (x̂n) · · ·ϕ (x̂1) Ψ0, U (−a) A Ψ0〉. (12)

Let us consider∫
d a ei p a 〈A+ Ψ0, U (a) ϕ(x̂1) ...ϕ(x̂n) Ψ0〉 =
∫

d a ei p a 〈ϕ (x̂n) · · ·ϕ (x̂1), U (−a) A Ψ0〉. (13)

In accordance with eq. (8) the left part of eq. (13) is not zero only if
p ∈ V̄ +

2 and the right part is not zero only if −p ∈ V̄ +
2 . So if we take

vector ϕ (x̂n) · · ·ϕ (x̂1) Ψ0, which is the linear combination of all basic vectors
excluding vacuum one, then

∫
d a ei p a 〈ϕ (x̂n) · · ·ϕ (x̂1), U (−a) A Ψ0〉 = 0 ∀ p. (14)

5



Eq. (14) implies that
〈Φ, A Ψ0〉 = 0 (15)

for any vector Φ, which is the linear combination of all basic vectors excluding
vacuum one.

So
A Ψ0 = C Ψ0, C ∈ IC. (16)

From eq. (16) it follows immediately that

A ϕ(x̂1) ...ϕ(x̂n) Ψ0 = C ϕ(x̂1) ...ϕ(x̂n) Ψ0. (17)

As A is a bounded operator eq. (17) implies that

A Φ = C Φ, ∀Φ ∈ H. (18)

Let us proceed to the general case θ0i 6= 0. As translation invariance is
valid in noncommutative theory, we can obtain the same result for general
case as well. To do it we use the possibility to describe noncommutative fields
in commutative coordinate space. To this end we have to substitute the usual
operators product by ? (Moyal) product [9]. The extension of this ? product
to different points x̂1 and x̂2 is not unique. In [14] it was assumed that in
different points we can use a standard multiplication. In [15] ? product was
proposed also for different points. In [17] it was shown that a concrete form
of above mentioned multiplication is not essential if it satisfies some general
constrain. Such multiplication we denote as ϕ (x)?̃ϕ (y). So

W (x̂1, x̂2, ..., x̂n) = 〈Ψ0, ϕ (x1) ?̃ ϕ (x2) · · · ?̃ ϕ (xn) Ψ0〉. (19)

If we assume that basic vectors are the eigenvectors of the translation oper-
ator in the usual meaning, that is

U (a) ΨP = ei P a ΨP , (20)

we see immediately that standard proof of eq. (8) [1, Ch. 2] is valid in
noncommutative case as well.

We have shown above that condition P 0
n > 0 for any basic vector, ex-

cluding vacuum one, is sufficient to prove irreducibility in noncommutative
case. Thus if this condition is valid in general noncommutative case, then
corresponding set of field operators is irreducible.
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3 Reeh-Schlieder Theorem in Noncommuta-

tive Theory

Let us first consider the case of space-space noncommutativity. Let O be an
arbitrary open domain of commutative variables x0

i and x3
i . We prove that if

〈Φ, ϕ(x̂1) ...ϕ(x̂n) Ψ0〉 = 0 ∀(x0
i , x

3
i ) ∈ O, (21)

then Φ = 0.
For simplicity we restrict ourselves by vectors Φ ∈ H0, where H0 is the

space of all finite linear combinations of basic vectors, H is a closure of H0. In
accordance with above mentioned analytical properties of noncommutative
Wightman functions in tubes,

〈Φ, ϕ(x̂1) ...ϕ(x̂n) Ψ0〉

is an analytical function of commutative variables −x1 − i η1, x1 − x2 −
i η2 · · ·xn−1 − xn − i ηn, ηi ∈ V̄ +

2 , xi = {x0
i , x

3
i }. Owing to the condition (21)

this function vanishes in the open set on its boundary. Thus this function is
equal to zero in the all domain of analyticity and all boundary points.

So
〈Φ, ϕ(x̂1) ...ϕ(x̂n) Ψ0〉 = 0 ∀x̂i. (22)

As vectors ϕ(x̂1) ...ϕ(x̂n) Ψ0〉 form the whole set of basic vectors, the condi-
tion (22) means that Φ.

Now let us proceed to the general case. If we assume that P 0
n > |P j

n|,
where j is one of spatial coordinates, Wightman function is an analytical
function in the tube: νi = ξi − i ηi, ξi = {ξ0

i , ξ
3
i }, ηi = {η0

i , η
3
i }, ηi ∈ V̄ +

2 .
So we can obtain Reeh-Schlieder theorem, in which O is the open domain in
variables x0

i , x
j
i . Let us point out that in commutative case our result means

that Reeh-Schlieder theorem is still valid if we use a smaller domain O than
standard one.

It follows from Reeh-Schlieder theorem that the set of operators ϕ (xi),
xi ∈ O and Π, where Π is a projection operator on the vacuum state, is
irreducible. The proof is similar with the proof of analogous assertion in
commutative case [1].
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