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Abstract

We discuss gravitational interaction realized on the Randall-Sundrum
(RS) infinite braneworld. The RS infinite braneworld has an out-
standing feature that effects of extra-dimension are not suppressed
exponentially at a long distance. Another interesting aspect is that
the model allows a dual interpretation according to the AdS/CFT
correspondence conjecture. We show several explicit confirmations of
the AdS/CFT correspondence on the correction to the gravitational
interaction, including a new result about tensor perturbations on a
Friedmann brane. Based on the AdS/CFT correspondence the author
has pointed out the possibility that black holes evaporate in a classical
manner. We also mention the current status of study related to this
conjecture.

1 Introduction

The braneworld scenario was proposed as an alternative way of compact-
ifying extra dimensions[l, 2, 3, 4]. The braneworld scenario is essentially
different from the ordinary Kaluza-Klein compactification in that the matter
fields of the standard model are localized on the brane, while gravity can
propagate in a higher dimensional spacetime called “bulk”. Since the ordi-
nary matter fields are localized on the brane, they do not notice the presence



of extra-dimensions. Particle physics experiments are not affected by extra-
dimensions before the energy reaches the scale determined by the size of the
extra-dimensions. Hence we do not see any contradiction even though extra
dimensions are rather large. In such a scenario, gravity can be modified at
a relatively long distance. The experimental constraint on deviation from
Newton’s law is absent below sub mm scale. Naively therefore there is a
possibility that extra dimensions are as large as sub mm scale.

A novel idea was proposed by Randall and Sundrum (RS)[3, 4], and we
focus on their second model (RS II)[4]. The model assumes 5D Einstein
gravity with a negative cosmological constant A = —6/¢%. Ordinary matter
fields live on a 4-dimensional brane, which has positive tension o = 3/47G5/,
where G5 is the 5D Newton constant. Z-symmetry is imposed across the
brane.

The simplest background solution is 5D anti-de Sitter (AdS) space

2
ds* = % (d2* + nudatda) (1)

with a brane placed at z = ¢. Here 7, is the 4D Minkowski metric. An
outstanding feature of this model is that 4D Einstein gravity is effectively
reproduced on the brane in spite of the infinite extension of the extra dimen-
sion.

2 Linear analysis of Randall-Sundrum II model

First we briefly discuss linear perturbations of this model. For this purpose,
the RS gauge (h,, = 0 with transverse-traceless conditions) is convenient. In
this gauge, the equations for bulk metric perturbations become

[—53 + V(Z)} Y = W, (2)
where 1, = \/|z| + { h,, and
15 _
V(z) = EEYE 30715(2). (3)

Assuming the form 1, o u;,(2)e™ ™ we have an eigen value problem to

determine the mode u,,(z). Here m? = —k,k* is interpreted as the mass
of an effective 4D field. An interesting fact is that the 5D metric given in



Eq. (1) satisfies the 5D Einstein equations even if we replace the Minkowski
metric 7, dx*dx” with any vacuum solution of the 4D Einstein equations.
Correspondingly, a discrete massless mode ug(z) exists. The massless wave
function behaves as ug(z) oc 1/22. Since the potential V(z) vanishes at
|z2] — oo, the mass spectrum is continuous for m? > 0. The potential
V(z) has a barrier near the brane with the height of O(¢~2). The wave
function w,,(2) with 0 < m < ¢7! is suppressed near the brane due to this
potential barrier. On the other hand, u,,(z) with m > ¢! is unsuppressed
near the brane, but excitation of such modes requires a large input of energy.
Therefore the zero mode dominates at low energies, and hence 4D Einstein
gravity is recovered at the linear level.

Linear metric perturbations induced on the brane were fully explicitly
shown in Ref.[5] as
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where G(z,z’) is the 5D scalar Green function.
In the case of spherical symmetry the gravitational field outside the mat-

ter distribution is evaluated as hgy =~ 2GT4M (1 + %) ,hij = 2G+M <1 + %) 5,
6]. The correction to 4D Einstein gravity is suppressed by ¢2/r? where r is

the distance from the source. If we neglect the contribution due to massive
modes (m? > 0), Eq. (4) exactly recovers linearized 4D Einstein gravity.

3 Non-Linear Perturbation

Recovery of 4D Einstein gravity at the non-linear level is not so trivial. The
difficulty can be anticipated from the linear analysis. The wave function of
the massless mode behaves as

()

h,, (massless mode) ~ pox

at a large z, and hence a Weyl invariant C,,,,,C*"?” behaves as = z*. In the
direction of the extra dimension therefore the curvature becomes infinitely



large. The wave function of the massive modes behaves as

h,. (massive mode) ~ NG (6)
Hence, the same invariant is more severely divergent like C,,,C*?7 = 27.

However, such divergences do not directly indicate breakdown of the per-
turbation analysis. For static cases, the perturbed metric induced by matter
fields on the brane was shown to be regular at large 2[5] . Even in dynamical
cases, the asymptotic regularity was proved in Ref.[7]. Here it will be worth
pointing out that the regularity is recovered only after summation over all
massless and massive modes.

Analysis of non-linear perturbations is not straightforward. The picture
of a 4D effective theory composed of a tower of massive gravitons breaks
down. In this picture the effective coupling between various massive gravitons
diverges. Nevertheless, for static and spherically symmetric configurations
on the brane second order perturbations were proved to behave well[8, 9].
Approximate recovery of 4D Einstein gravity in the strong gravity regime is
also confirmed numerically in Ref.[10].

We found that 4D Einstein gravity is a rather good approximation to
gravity on the brane in the R-S II model. However, there still remains a
question whether the similarity to 4D Einstein gravity continues to hold
even when an event horizon is formed.

4 Black Hole and AdS/CFT Correspondence

In Ref.[11], a black string solution given by
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was discussed, where qff,‘,)da:“dx” is the usual 4D Schwarzshild metric. For
this solution Cl,,,C**? behaves like o< z*r~%, where r is the Schwarzshild
radial coordinate. At a large z for a fixed r, this Weyl invariant diverges[11].
Also, this configuration is known to be unstable[12, 13]. Hence, the black
string solution cannot be the final state of gravitational collapse. Therefore
it is natural to expect that another black hole solution whose event horizon
is localized near the brane will exist.



However, this expectation might be too naive. I raised a conjecture that
black holes localized on the brane may not exist[14], based on the AdS/CFT
correspondence conjecture[15, 16]. The AdS/CFT correspondence conjecture
indicates

Werr = Sen + Sagr — 51— S2 — 53, (8)

where Spir = — gz [ @1/~ (PR+ 1),
(4)

San = _87r1G5 Jdiey/=WgK, 8 = _87r2¥5€ Jdie/=Wg, S5 = _327fc5 Jd'z/=Wg R
and S3 = - --. Wepr is the effective action of 4D CF'T fields evaluated on the
metric induced on the boundary. K is the trace of the extrinsic curvature
of the boundary. Left hand side is the action for 5D gravity theory. The
counter terms Sy, Se and S3 are necessary to cancel manifest dependence on
the boundary location. The location of the boundary plays the role of the

cutoff parameter of CFT. Now we consider the action of the RS II model
without any matter fields:

SRS :Q(SEH—l-SGH) —25; :252+2(WCFT+53). (9)

Here we used the formula (8) in the second equality. We notice that 25 is
nothing but the ordinary 4D Einstein-Hilbert action, while W g + S5 is the
effective action of cutoff CFT. This formula indicates equivalence between
the RS infinite braneworld and 4D Einstein gravity with cutoff CF'T. Here we
call this statement an extended AdS/CFT conjecture. Notice that the one-
loop quantum effect of 4D CFT fields is included in the classical dynamics
of bulk gravity in 5D picture.

The correspondence at the linear level was clearly shown in Ref.[17]. After
integrating out the CFT degrees of freedom, we obtain the effective action
for 4D gravity as
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where D™! is the graviton propagator and II is the CFT contribution to the
graviton self-energy. From this action we obtain an equation schematically
like ¢ ~ DT — DIIDT, where T is the matter energy-momentum tensor.
In this manner the leading correction to 4D Einstein gravity in momentum
representation is evaluated as

(5?1“,, = —167TGH<p) {pr(p) - %nuuf(p>} ’



where TI(p) = —& (In(p®/u?) + constant). A quantity associated with “~” is
the Fourier transform of the corresponding variable.
On the other hand, in the 5D picture the leading correction is given by

. Ko(pl) 1 7
5h/w 8 GspK1(p€) {T (p) - gnuuT(p>} .

By expanding the modified Bessel functions as Ko(pl) /pK; (pl) ~ —%(In(p*(?/4)+
constant) + O(p*(*), we find that the correspondence holds perfectly at the
linear level. The difference starts with the forth power in ¢ due to higher
order corrections that we neglected here.

In general the correspondence has not been verified beyond the linear
level. However, homogeneous cosmology gives an important exceptional
example[18]. By using the geometric approach[19], the trace of the ef-
fective Einstein equations is written without any reference to the bulk as
WG = 8rG,T + (87ri4£)2 (T w T — %TQ) . On the other hand, the trace part
of the energy momentum tensor of CFT is solely determined by the trace
anomaly, and hence the trace of the Einstein equation with CFT becomes
WG =8rGyT+02/4 (WG, WG — tWGEWE) . Hence, it will be easy to see
that the difference starts Wlth the forth power in £. Therefore approximately
the same modified Friedmann equation follows in both cases.

Moreover, we have recently shown that the correspondence holds not only
for the background Friedmann cosmology but also for perturbations on it[20].
In both pictures the same equation governing tensor type perturbations with
a comoving wavenumber k*,

2
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is derived. Here 7 is the conformal time, H = 9, Ina, p* = —w? + k%

So far, we have observed several direct evidences for the extended AdS/CFT
correspondence, which we now apply to the formation of a black hole in the
RS II model. In 4D CFT picture, the back reaction due to the Hawking ra-
diation is expected to be much more efficient than in the ordinary 4D theory
by a factor of £2/G,. According to the AdS/CFT correspondence, the one-
loop quantum effect of CFT in 4D picture must be described as a classical
dynamics in 5D picture. This indicates classical black hole evaporation and
the absence of a stationary black hole solution in the 5D RS model[14, 21].
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Then, the first question is whether a brane black hole looks similar to
an ordinary 4D BH or not. It is very interesting if a brane black hole looks
quite different from the ordinary black hole in the 4D Einstein gravity. In
this case we might be able to use astronomical observations of black holes
to probe the extra dimension. If they look similar, there arises the second
question whether the AdS/CFT correspondence applies for the black hole
configuration. Even the case that the correspondence does not hold in such
a strong gravity regime is still interesting because we may be able to distin-
guish the model described by the 4D CFT picture from the 5D RS model
observationally in this case. Extremely interesting is the remaining possibil-
ity that the correspondence really applies even for a black hole configuration.
In this case, we can evaluate the mass loss rate due to the Hawking radiation
as M /M ~ N x (1/G3M?3) ~ 2/(G4M)3. Then the evaporation time scale
becomes 7 = (M/Mg)?(1mm/f)? x 1 year. The existing black holes in X-ray
binaries will give a stronger constraint on the value of ¢ than that from the
laboratory experiment|[22].

There is a static black hole solution when a 2-brane in the 4 dimensional
bulk is considered[23]. The 3-dimensional metric induced on the brane looks
similar to a 4-dimensional Schwarzshild black hole;

20l AN
ds* = — (1 - L) dt* + <1 — L) dr® + r2de?. (10)
r r
.. . . 4
However, the period in @-direction is not 27 but Ay ~ ———— where we
3

assumed that p > 1.

One may think that the presence of this static black hole solution in
a lower dimensional case is a counter example against the conjecture of the
classical black hole evaporation. But this does not apply at all. An important
peculiarity of this lower dimensional example is that the induced metric is
far different from a solution of the 3D vacuum Einstein equations. It is worth
pointing out that this effective energy momentum tensor necessary to realize
the above solution

wl .
T)S,FT = _87TG37“3 dla’g(la ]-7 _2)7 (1]')

can be understood as the Casimir energy of CF'T on a background of 3D flat
spacetime with a deficit angle, which is in fact a solution of the 3D vacuum



Einstein equations. This means that the black hole horizon is formed only
after taking into account the one-loop effect due to CF'T fields. Namely, at
the lowest order there is no black hole. Therefore it is natural that the CF'T
fields do not have any radiating component corresponding to the Hawking
radiation[21].

Finally, we give a few comments on recent attempts to find a black hole
solution by means of a numerical method[24, 25]. Small black hole solutions
whose horizon radii are smaller than or comparative to the AdS curvature
radius ¢ were found, and an interesting indication against the classical black
hole evaporation conjecture was obtained. In the above Refs. a few ther-
modynamic relations, like a temperature-area relation, were plotted. Those
plots indicate that the sequence of numerical solutions can be smoothly ex-
trapolated to those who look like a 4D Schwarzshild black hole. However, it
became more and more difficult to construct larger black hole solutions.

Thus, first of all, a question to answer is whether the small black hole
solutions obtained numerically really exist in a strict sense. As we have
seen before, the difference between two different 4D and 5D pictures arises
at the forth power in . Hence, when the size of black hole is as small as
¢, the naive correspondence will cease to hold. Therefore the presence of
small black hole solutions does not contradict with the classical black hole
evaporation conjecture. There is a possibility that the answer to the above
question is “No”. Even if tiny inconsistencies may exist, they can be hidden
by numerical errors. If the answer is “Yes”, there arises the second question
whether large black holes continue to exist or not. To answer the second
question, further study is necessary.

5 Summary

First of all gravity in the RS II model mimics 4D Einstein gravity very well.
Although a naive picture to see this model as the usual four dimensional
Einstein gravity with a tower of massive gravitons breaks down in non-linear
regime, the effets of the fifth dimension still remain small. However, interest-
ingly the extended AdS/CFT correspondence suggests a qualitative differ-
ence from the standard case in that there is no static large brane black hole
solution. Alghough the extended AdS/CFT correspondence was explicitly
checked in various cases, such as liner perturbations on a Minkowski brane,
the modified Friedmann equation, and tensor perturbations on a Friedmann



brane, there still remains the possibility that the naive correspondence does
not work once a black horizon is formed. To examine whether black hole so-
lution exists or not, numerical calculation was performed. We succeeded in
constructing small brane black holes, whose horizon size is not much bigger
than the bulk curvature scale. In this regime, the AdS/CFT correspondence
is expected to be invalidated. Hence, further study is necessary to settle this
issue.
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