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Abstract

The problem of UV-IR mixing in noncommutative quantum gauge
invariant models is discussed. A gauge invariant U(1) model on the
noncommutative spacelike plane is presented and analyzed in the axial
gauge. It is shown to be free of nonintegrable infrared singularities.

1 Introduction

In this talk I discuss some progress in understanding of quantum noncommu-
tative gauge invariant theories, based on the results, presented in my papers
([1], [2]).

The most striking feathure of quantum noncommutative models is ap-
pearance of nonintegrable infrared singularities in radiative corrections to
scattering amplitudes. Some UV-finite one loop diagrams have singulari-
ties at zero external momenta. That leads to a drastic modification of the
dispersion law which makes a physical interpretation of the corresponding
states rather cumbersome. Moreover, when diagrams having infrared poles
are inserted as subdiagrams to multiloop graphs the corresponding integrals
acquire nonintegrable infrared singularities. As a result quantum noncommu-
tative models have not only UV-singularities which may be removed with the
help of a proper renormalization, but also infrared singularities which make
these models inconsistent ([3]- [12]). Infrared poles arise in conditionally con-
vergent diagrams, which by power counting have the divergency index equal
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to 1 or 2. It makes plausible that such poles are absent in renormalizable
supersymmetric models, where in the commutative case all UV-divergencies
are logarithmic by power counting. Indeed explicit calculations of one-loop
diagrams in N = 1 supersymmetric gauge models showed that in this case
infrared pole singularities are absent ( [13]-[15]). If this property holds in
higher loop diagrams as well, supersymmetric noncom- mutative gauge mod-
els would allow a consistent treatment. At present the consistency was proven
to all orders for supersymmetric Wess-Zumino model ([16]) and for the three
dimensional supersymmetric U(1) model ([17]). Nevertheless such models
are hardly satisfactory as a smooth commutative limit does not exist and ra-
diative corrections in these models produce large Lorentz symmetry breaking
effects.

Recently we proposed a modification of the nonsupersymmetric U(1)
model on the spacelike noncommutative plane, which seems to be free of
nonintegrable infrared singularities ([1]). Contrary to the straight forward
generalization of QED, this model describes a spin zero particle. It has a
smooth commutative limit, so Lorentz symmetry breaking effecta are under
control and may be done small. In the following sections we shall describe
in more details the problems related to UV-IR mixing in noncommuta- tive
gauge theories and possible ways to resolve these problems.

2 Noncommutativity and UV-IR mixing

Last years noncommutative models attracted a new interest, mainly in con-
nection with development of string and matrix models. For example, it was
shown ([18]) that the supersymmetric gauge theory on a noncommutative
torus is related to a compactification of the matrix model with the action

S =

∫
dttr(

∑
i,j

(DiXj)
2 −

∑
i<j

[Xi, Xj]
2) (1)

where Xj are t-dependent matrices and D is a covariant derivative

D = ∂t + iA0(t) (2)

Another important application of noncommutative theories was found by
Seiberg and Witten ([19]), who showed that in a certain limit the dynamics
of the string model with a nonzero magnetic field may be described by a
noncommutative super- symmetric gauge theory.
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In these and other examples noncommutative models appear as some
effective theories describing some more fundamental models for certain values
of parameters.

There are also attempts (both theoretical and experimental) to consider
noncom- mutative models as fundamental ones, leading to small violations
of Lorentz invari- ance at very small distances. In the classical theory choos-
ing the parameter ξ in the eq.(3) small enough, one can supress corrections
to the usual commutative models avoiding a contradiction with experiment.
However such approach make sense only if the quantum corrections are also
negligible for small values of the noncommutativity parameter ξ. Similar
problems arise when noncommutative models are considered as effective the-
ories: in all these cases the quantum corrections must be under control and
should not change drastically classical results.

It appears that in noncommutative models new divergencies, assosiated
with the infrared behaviour of matrix elements arise, which make question-
able their selfconsistency.

Let us consider this phenomenon in more details.
The noncommutative U(1) model is described by the action

S =

∫
d4x{−

1

4
FµνFµν} (3)

Fµν = ∂µAν − ∂νAµ + ig[Aµ, Aν]∗ (4)

The symbol []∗ means the commutator in which the star product is used.
The star product is defined as follows

f(x) ∗ g(x) = exp{iξθµν∂
x
µ∂y

ν}f(x)g(y)y=x (5)

where θµν is a real antisymmetric matrix and ξ is a noncommutativity pa-
rameter. In the limit ξ → 0 the action (3) obviously reduces to the free
electromagnetic action.

The gauge transformations look similar to nonabelian gauge transforma-
tions

δAµ = ∂µε − ig(Aµ ∗ ε − ε ∗ Aµ) (6)

Note that although for a general skewsymmetric matrix θµν the interaction
(3) is nonlocal, models with θi0 = 0 introduce only spatial nonlocality and
the standard Hamiltonian formalism may be applied. In what folows we
assume that θi0 = 0 and Hamiltonian formalism may be used. We take
θ12 = −θ21 = 1; θ13 = θ23 = 0.
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In this case the quantization may be done in a standard way, and the
Feynman rules look similar to the usual Yang-Mills theory. In the covariant
α-gauges the Faddeev-Popov ghosts appear with the Lagrangian

L = ∂µc̄(∂µc − ig[Aµ, c]∗) (7)

The quadratic part of action in the noncommutative case coincides with the
correspon- ding part of the commutative model, hence the propagators have
the same form. However the interaction looks differently. The main difference
is the appearance of oscillating factors in the interaction vertices. The three
point gauge vertex with the momenta k1, k2, k3 and indices µ, ν, ρ has a form

2ig sin(ξk1k̃2)[(k1 − k2)ρδµν + (k2 − k3)µδνρ + (k3 − k1)νδµρ] (8)

and the four point vertex is

−4g2[gµρgνσ − gµσgνρ) sin(k1k̃3ξ) sin(k2k̃4ξ) + sym] (9)

where sym means symmetrization with respect to interchange of momenta
ki and indices µ, ν, ρ. Here we used the notation k̃µ = θµνkν.

Using these Feynman rules one can write the analytic expression for the
one loop gauge boson polarization operator. In dimensional regularization it
looks as follows (up to some unimportant finite terms):

Πµν(p) =
4g2µ2ε(2π)d

∫
ddk sin2(kp̃)(− 3

k2 deltaµν −
kµkν+kµ

p ν

k2(p + k)2
+

k2 + (k + p)2 + 4p2)δmuν + 10kµkν − 2pµpν + 5kµpν + 5pµkν

2k2(k + p)2
(10)

To get an idea what kind of singularities one may expect, let us consider the
first term in the integral (10) in more details. We rewrite it in the form

I =

∫
ddk

1

2
(1 − cos(2kp̃)

3

k2
(11)

First of all we see, that the presence of trigonometric factors does not remove
ultraviolet infinities completely. The integral I consists of two terms. The
first one is quadratically divergent and the divergency may be removed by
introduction of the usual counterterms. (In the case under consideration this
counterterm would correspond to the photon mass renormalization. Due to
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the gauge invariance of the model in dimensional regularization this term
is absent). The other terms in the integral (10) include logarithmically di-
vergent parts, which require the wave function renormalization counterterm.
The most interesting is the second term in the integral (11). This term is
convergent and can be calculated explicitely:

I =
π2

Γ(1)
(p̃)−2 (12)

One sees that the integral (12) is singular at p̃2 = 0. The origin of this
singulariry is easy to understand. The second term in the integral (11) is
convergent for any p̃ 6= 0 due to the presence of the oscillating factor. How-
ever for p̃ = 0 oscillations are absent and the integral diverges quadratically.
This is the phenomenon of UV-IP mixing, which is characteristic for non-
commutative models.The oscillating factors in the interaction vertices supress
some of the UV-divergencies, but at the same time result in the appearance of
infrared singularities. In particular the gauge field polarization operator has
ultraviolet divergent part corresponding to so called planar diagrams, and
the convergent nonplanar part, which contains the term singular at p = 0.
Explicit calculation gives

Πµν(p) =
g2

2π2

p̃µp̃ν

ξ2(p̃2)2
+ . . . (13)

where . . . denotes the terms proportional to ln(ξp2) and terms, regular at
p = 0.

Similar singularities appear in the three point function, which looks as
follows

Γµνρ(p, q) ∼ cos(ξpq̃){
p̃µp̃ν p̃ρ

ξ(p̃2)2
+ sym} + . . . (14)

where . . . again stands for less singular terms and sym means symmetrization

p → q, µ → ν; p → −(p + q), µ → ρ; (15)

It is worth to notice that the singular terms (14, 15) are compatible with
the gauge invariance. Ward identity for the polarization operator is equiv-
alent to transversality of Πµν(p). As pµp̃µ = 0, this condition is obviously
satisfied.

The singularity of Πµν at p = 0 changes drastically the dispersion relation.
A new singularity at p = 0 appear. Moreover, when the diagrams having pole
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singulaities at p = 0 are inserted as subgraphs ro more complicated diagrams,
they may generate nonintegrable infrared singularities, making the theory
inconsistent.

All other diagrams are either regular at zero momenta or have logarith-
mic infrared singularities. In general infrared pole singularities arise in the
diagrams which in the absence of phase factors would be quadratically or lin-
early ultraviolet divergent. Logarihmically divergent diagrams produce only
logarithmic infrared singularities which do not spoil integrability. Although
in the classical theory noncommutativity may lead to tiny deviations from
the commutative case, provided the parameter ξ is small, in the quantum
theory in no way noncommutativity may be considered as a small effect.

In the paper ([1]) we suggested that the presence of nonrenormalizable
divergen- cies in the noncommutative U(1) model indicates that this theory is
not complete and the classical action should be modified by adding new gauge
invariant terms. As we have seen, the new singular structures appearing in
radiation corrections are proportional to p̃. So it is natural to look for a new
action which contains such terms from the very beginning. The other natural
requirements which we impose are the following: the modified action must
be gauge invariant, introduce nonlocality only via Moyal products and in the
limit ξ → 0 describe a Lorentz invariant theory.

The classical action proposed in ([1]) looks as follows

A =

∫
d4x{−

1

4
FµνFµν + λ(x)θµνFµν(x)} (16)

Here λ(x) is the Lagrange multiplier transforming according to adjoint
represen- tation of the gauge group.

At first site the action (16) breaks Lorentz invariance even in the commu-
tative limit. However a proper hamiltonian analysis shows that in the limit
ξ → 0 Lorentz invariance is restored.

Variation of the action (16) over λ(x) produces the new constraint:

θµνFµν(x) = 0 (17)

leading to the reduction of the number of physical degrees of freedom. Al-
though the action (16) is written in terms of the vector field Aµ, it describes
a spin zero particle. In the next section we shall show that fixing a gauge in
a proper way and rescaling variables, one can rewrite the theory in the form
when Lorentz invariance in the commutative limit is manifest. Moreover, we
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shall prove that radiative corrections for the modified models do not gen-
erate infrared pole singulariries and the limit ξ → 0 exists at any order of
perturbation theory.

3 The modified U(1) model in axial gauge.

The easiest way to demonstrate the absence of infrared poles and existence
of a Lorentz invariant commutative limit is to consider the model in the axial
gauge A1 = 0 ([2]). In this gauge the constraint (17) reduces to

∂1A2 = 0 (18)

where we took into account that the only nonzero elements of the matrix θµν

are θ12 and θ21. Assuming the usual asymptotic condition Aµ(x) → 0 when
~x → ∞ we see, that the eq.(18) implies A2 = 0.

The classical action (16) in the chosen gauge has a form

A =
1

2
(∂0A3 − ∂3A0 + ig[A0, ∗A3])

2+

+
1

2

∑
i=1,2

(∂iA0)
2 −

1

2

∑
i=1,2

(∂iA3)
2 (19)

Introducing the canonical momentum

p3 =
∂L

∂Ȧ3

= F03 (20)

we may write the action in the form

A =

∫
{p3Ȧ3 −

1

2
p2

3 + A0D3p3 +
1

2

∑
i=1,2

(∂iA0)
2 −

1

2

∑
i=1,2

(∂iA3)
2}dx (21)

Here D3 is the covariant derivative. The variable A0 can be excluded by
solving the corresponding time independent equation

A0 = (∇)−2D3p3, (∇)2 = ∂2

1 + ∂2

2 (22)

Substituting this solution to the action (21) we get

A =

∫
{p3Ȧ3 −

1

2
p2

3 −
1

2
D3p3∇

−2D3p3 −
1

2

∑
i=1,2

(∂iA3)
2}dx (23)
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This equation describes a scalar particle with the Hamiltonian

H =
p2

3

2
+

1

2
D3p3∇

−2D3p3 −
1

2

∑
i=1,2

(∂iA3)
2 (24)

and the canonical quantization is applied directly.
The action (16) is not invariant with respect to the Lorentz transforma-

tion, however in the classical commutative limit ξ → ∞ the invariance of the
theory is restored.

Indeed in the commutative limit the action acquires a form

A =

∫
{p3Ȧ3 −

1

2
p2

3 −
1

2
∂3p3∇

−2∂3p3 −
1

2

∑
i=1,2

(∂iA3)
2}dx (25)

In terms of the rescaled variables

π(k) = [1 + k2

3(k
2

1 + k2

2)
−1]

1

2 p̃3(k) (26)

φ(k) = [1 + k2

3(k
2

1 + k2

2)
−1]−

1

2 Ã3(k) (27)

it is the standard Lorentz invariant action describing the free scalar particle:

A =

∫
{πφ̇ −

1

2

3∑
i=1

(∂iφ)2}dx (28)

However the quantum corrections may break this smooth transition as it
happens in the standard noncommutative U(1) model. Below we shall show
that in our model the smooh transition to the free scalar particle exists in
the quantum case as well. All quantum corrections vanish in the limit ξ → 0.

The scattering matrix may be presented as usual in the form of the path
integral of the exp{iA}, where A is given by the eq.(23). It is more convenient
to write it introducing the integration over A0:

S =

∫
exp{i

∫
[p3Ȧ3 −

1

2
p2

3 + A0D3P3+

+
1

2

∑
i=1,2

(∂iA0)
2 −

1

2

∑
i=1,2

(∂iA3)
2]dx}dA3dA0 (29)

where the usual asymptotic conditions for A3 are assumed.
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Performing the Gaussian integration over P3 we get

S =

∫
exp{i

∫
[
1

2
F 2

03 +
1

2

∑
i=1,2

(∂iA0)
2 −

1

2

∑
i=1,2

(∂iA3)
2]dx}dA3dA0 (30)

The propagator is determined by the inverse of the quadratic form of the free
action (30) and looks as follows

Dµν(k) =
1

k2 + iε
{gµν −

kµkν

k2
1 + k2

2

}; µ, ν = 0, 3 (31)

As all other elements of Dµν are zero, it obviously satisfies the constraint
equation

k̃µDµν(k) = 0 (32)

Due to gauge invariance of the action (16) the Green functions satisfy
Generalized Ward Identities:∫

exp{iA +

∫
[

1

2α
(A1)

2 + JµAµ]dx}

{
1

α
∂1A1(x) − ∂µJµ(x) + ig[Aµ(x), ∗Jµ(x)]}dAµ = 0 (33)

For the two-point function one has

−
i

α
< ∂1A1(x)Aν(y) >= ∂νδ(x − y) (34)

Fourier transform of the polarization operator satisfies the transversality con-
dition

pµΠµν = 0 (35)

Let us consider the polarization operator in more details. It is easy to see
that the pole singular terms in this function depend only on p̃. Indeed, the
polarization operator has a form

Πµν(p) =

∫ ∏
i

dki sin(k1p̃ξ) sin(knp̃ξ)[fµν(k1 . . . kn, p0, p3, p̃)] (36)

Here the integrand is a rational function with the dimension p−4n+2 , mul-
tiplied by the product of trigonometric functions. Let us present Πµν(p) as
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follows

Πµν(p) =

∫
[fµν(k1 . . . kn, p0, p3, p̃) − fµν(k1 . . . kn, 0, 0, p̃)]×

×
∏

i

sin(k1p̃ξ) sin(knp̃ξ)dki

+

∫
fµν(k1 . . . kn, 0, 0, p̃)

∏
i

sin(k1p̃ξ) sin(knp̃ξ)dki (37)

The first term cannot produce the second order infrared pole, as the integral
of the rational part diverges at most linearly. In fact for symmetry reasons
the divergency is logarithmic. Hence the pole infrared singularities may be
present only in the second term, which depends only on p̃.

The only possible structure compatible with the Ward identities (33) is

Πpole
µν (p) = p̃µp̃νΠ(p̃) (38)

Now we recall that the free propagator of the field Aµ, given by the
eq.(31), satisfies the transversality condition (32). Therefore a possible in-
frared pole singula- rity of Πµν(p) does not contribute and is irrelevant for
calculation of any diagram. The only allowed infrared singularity is logarith-
mic ∼ ln(p̃2ξ). This singularity is integrable and does not make the theory
inconsistent.

In fact in the gauge under consideration the absence of infrared pole singu-
larities is quite obvious. The only nonzero elements of of the free propagator
Dµν correspond to µ, ν = 0, 3. At the same time the pole singular part of
the polarization operator Πµν depends only on p̃µ, and hence is proportional
to p1 or p2. Obviously

DµνΠ
pole
να = 0 (39)

Similar arguments are applied to the three point function. By the same
reason the pole singular part depends only on p̃, q̃ and hence

Dµα(p)Γpole
ανρ(p, q) = Dνα(q)Γpole

µαρ(p, q) = Dρα(p + q)Γpole
µνα(p, q) = 0 (40)

As in the case of polarization operator the only possible infrared singularities
of Γµνρ(p, q) are logarithmic.

All other diagrams are at most logarithmically UV divergent by power
counting and cannot produce infrared pole singularities.
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So we proved that the the U(1) noncommutative model described by the
action (16) is free from nonintegrable infrared singularities and allows calcu-
lation of radiation corrections to arbitrary order. Note that all interaction
vertices in the commutative limit ξ → 0 vanish as ξ. Taking into account that
possible singularities in ξ are ∼ ln(ξ), we conclude that the limit ξ → 0 exists
in the quantum version of our model and describes the free scalar particle.

Our conclusion does not change if the interaction with a spinor field in
adjoint representation is included. The model is free from infrared pole singu-
larities and in the limit ξ → 0 is Lorentz invariant. If the interaction includes
also spinor field in the fundamental representation infrared singularities are
still absent, but in the limit ξ → 0 Lorentz invariance may be broken.

4 Discussion

In this paper we considered the problem of ultraviolet-infrared mixing in
quantum noncommutative gauge theories. We presented a formulation of
the consistent U(1) model on the noncommutative plane (x1, x2). Contrary
to usual gauge invariant theories the gauge fields in our model correspond
to spin zero particles. It is an open question if one can include in models
of these kind also vector particles. At present we can say nothing about
possible physical significance of the model described above. Our main goal
was to demonstrate that consistent noncommutative gauge invariant models,
posessing a smooth commutative limit do exist. Acknowledgements.
This work was supported in part by Russian Basic Research Foundation
under grant 02-01-00126, grant 2052.2003.1 for support of leading scientific
schools, and by the RAS program ”Theoretical mathematics.”
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