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Abstract

We present a new (1+3)-brane solution to Einstein
equations in (1+5)-space. As distinct from previous mod-
els this solution is free of singularities. The gravitational
potential transverse to the brane is an increasing (but not
exponentially) function and asymptotically approaches a
finite value. The solution localizes the zero modes of all
kinds of matter fields and Newtonian gravity on the brane.
An essential feature of the model is that different kind of
matter fields have different localization distances.

The scenario where our world is associated with a brane embedded in
a higher dimensional space-time [1, 2, 3] has attracted a lot of interest. In
the models of [2, 3] gravitons, which are allowed to propagate in the bulk,
are confined on the brane because of a warped geometry. However, there
are difficulties with the choice of a natural trapping mechanism for some
matter fields. For example, in the existing (1+4)-dimensional models spin 0
and spin 2 fields are localized on the brane with an exponentially decreasing
gravitational warp factor, spin 1/2 field are localized with an increasing factor
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[4], and spin 1 fields are not localized at all [5]. For (1+5)-dimensions spin 0,
1 and 2 fields are localized on the brane with a decreasing warp factor and
spin 1/2 fields again are localized with an increasing factor [6].

The reason why there are problems with localization of fermions in warped
geometries is that the fermionic Lagrangians have an increasing exponen-
tial, coming from the metric tensors with upper indices, gAB, and from the
tetrads, hĀ

B. Thus the action integral over the extra coordinates diverges,
which signals the non-localization of the fermionic fields. In both (1+4)-
and (1+5)-space models with warped geometry one needs to introduce some
non-gravitational interaction to localize all the Standard Model particles.

For reasons of economy and to avoid charge universality obstruction [7]
one would like to have a universal gravitational trapping mechanism for all
fields. In [8, 9, 10] we found such a solution of the 6-dimensional Einstein
equations in (2+4)- and (1+5)-spaces, which localized all kind of bulk fields
on the brane. These solutions contain non-exponential scale factors, which
increase from the brane, and asymptotically approach a finite value at infin-
ity. In [11] the solution of [9] was generalized to the case of n dimensions.
In this paper we present a new solution to the Einstein equations in (1+5)-
space, which, similar to the models [8, 9], localizes all kind of fields, but is
free of singularities. Because of this feature of the solution we are able to fix
the free parameters of the model by setting realistic boundary conditions .

The general form of action of the gravitating system in six dimensions is

S =
∫

d6x
√

−6g

[

M4

2
(6R + 2Λ) +6 L

]

, (1)

where
√
−6g is the determinant, M is the fundamental scale, 6R is the scalar

curvature, Λ is the cosmological constant and 6L is the Lagrangian of matter
fields. All of these quantities are six dimensional.

The 6-dimensional Einstein equations with stress-energy tensor TAB are

6RAB −
1

2
gAB

6R =
1

M4
(ΛgAB + TAB) . (2)

Capital Latin indices run over A,B, ... = 0, 1, 2, 3, 5, 6.
As in [8, 9] we choose the ansatz for the 6-dimensional metric as

ds2 = φ2(r)ηαβ(xν)dxαdxβ − λ(r)(dr2 + r2dθ2) , (3)

where the Greek indices α, β, ... = 0, 1, 2, 3 refer to 4-dimensional coordinates.
The metric of ordinary 4-space, ηαβ(xν), has the signature (+,−,−,−). The
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functions φ(r) and λ(r) depend only on r, and thus are cylindrically sym-
metric in the transverse polar coordinates (0 ≤ r <∞, 0 ≤ θ < 2π).

The stress-energy tensor TAB is assumed to have the form

Tµν = −gµνF (r), Tij = −gijK(r), Tiµ = 0 . (4)

Using the ansatz (3), the energy-momentum conservation equation gives the
following relationship between the source functions F (r) and K(r) from (4)

K ′ + 4
φ′

φ
(K − F ) = 0 . (5)

We want to point out a problem associated with the source functions
(4). In general the Einstein equations have an infinite number of solutions
generated by different matter energy-momentum tensors, most of which have
no clear physical meaning. There is a great freedom in the choice of F (r)
and K(r); the only restriction on their form is (5). It is not easy to construct
realistic source functions from fundamental matter fields so that the brane
is a stable, localized object. We shall determine F (r) and K(r) from the
general physical assumptions that they are smooth functions of the radial
coordinate r, describe a continuous matter distribution for all r, and that
they decrease outside the brane r > ε, where ε is the brane width.

To solve equations (2) we take the 4-dimensional Einstein equations have
the ordinary form without a cosmological term i.e. Rµν − 1

2
ηµνR = 0. The

Ricci tensor in four dimensions Rαβ is constructed from the 4-dimensional
metric tensor ηαβ(xν) in the standard way. With ansätze (3) and (4) the αα,
rr, and θθ components Einstein field equations (2) respectively become

3
φ′′

φ
+ 3

φ′

rφ
+ 3

(φ′)2

φ2
+

1

2

λ′′

λ
−

1

2

(λ′)2

λ2
+

1

2

λ′

rλ
=

λ

M4
[F (r) − Λ] ,

φ′λ′

φλ
+ 2

φ′

rφ
+ 3

(φ′)2

φ2
=

λ

2M4
[K(r) − Λ] , (6)

2
φ′′

φ
−
φ′λ′

φλ
+ 3

(φ′)2

φ2
=

λ

2M4
[K(r) − Λ] ,

where the prime = ∂/∂r.
Subtracting the rr from the θθ equation and multiplying by φ/φ′ gives

φ′′

φ′
−
λ′

λ
−

1

r
= 0 . (7)
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This equation has the solution

λ(r) =
ρ2φ′

r
, (8)

where ρ is an integration constant with units of length.
Inserting (8) into (6) reduces the system to only one independent equa-

tion. Using either the rr, or θθ equation of (6) and multiplying by rφ4 gives

rφ3φ′′ + φ3φ′ + 3rφ2(φ′)2 =
ρ2φ4φ′

2M4
[K(r) − Λ] . (9)

In [9] the source functions F (r) and K(r) outside the core r > ε were
taken to have the form (f is some constant)

F (r > ε) = K(r > ε) =
f

φ2
, (10)

The following φ(r) and λ(r) are then solutions of the Einstein equations

φ(r) = a tanh

[

b

2
ln
(

r

c

)

]

= a
rb − cb

rb + cb
, λ(r) =

2bcbρ2rb−2

(rb + cb)2
(11)

where

a =

√

5f

3Λ
, b =

aΛρ2

5M4
, cb = εb

a− 1

a+ 1
(12)

are integration constants. The solution (11) is an increasing function from
the brane to some finite value at infinity

φ(∞) = a =

√

5f

3Λ
> 1 . (13)

The factor 1/φ2(r) has δ-like behavior outside the core and the source func-
tions (10) decrease as required.

In [9] it was shown that the solution (11) provides a universal, gravita-
tional trapping for all kinds of matter fields. However, in this model we did
not specify source functions on the brane 0 ≤ r ≤ ε and there were a large
number of free parameters. Now we want to choose the source functions F (r)
and K(r) everywhere, so that the solution φ will localize all kind of physical
fields and be a regular function in the full 6-dimensional space-time.
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We require for φ the following boundary conditions near the origin r = 0

φ(r → 0) ≈ 1 + dr2 , φ′(r → 0) ≈ 2dr , (14)

where d is some constant. At infinity we want φ(r) to behave as

φ(r → ∞) → a , φ′(r → ∞) → 0 , (15)

where a > 1 is some constant. Since the function φ′ is proportional to
the metric of the extra 2-space, the boundary conditions (15) imply that at
infinity λ→ 0 and the effective geometry is 4-dimensional.

The source functions F (r) and K(r), which satisfy restriction (5) and
give a desirable solution were found recently in the paper [12]

F (r) =
f1

2φ2
+

3f2

4φ
, K(r) =

f1

φ2
+
f2

φ
, (16)

where f1, f2 are constants.
Substituting (16) into (9), taking its first integral and setting the inte-

gration constant to zero yields [8, 12]

rφ′ =
ρ2Λ

10M4

(

5f1

3Λ
+

5f2

4Λ
φ− φ2

)

. (17)

By introducing the parameters A and a such that

ρ2Λ

10M4
= A , f1 = −

3Λ

5
a , f2 =

4Λ

5
(a + 1) , (18)

equation (17) becomes

rφ′ = A[−a + (a+ 1)φ− φ2] . (19)

Equation (19) is easy to integrate [12]

φ =
cb + arb

cb + rb
, (20)

where b = A(a − 1) and c are integration constants. From the boundary
conditions (14) it follows

b = A(a− 1) = 2 . (21)
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The width of the brane ε corresponds to the inflection point of the function
φ. Thus the condition φ′′(r = ε) = 0 fixes c in (20) as c2 = 3ε2. Finally the
solution φ corresponding to a non-singular transverse gravitational potential
for the brane has the form

φ =
3ε2 + ar2

3ε2 + r2
. (22)

From the condition that we have a 6-dimensional Minkowski metric on
the brane, λ(r = 0) = 1, we can fix also the integration constant in (8)

ρ2 =
3ε2

2(a− 1)
. (23)

Then using (21) the brane width can be expressed in terms of the bulk
cosmological constant and fundamental scale

ε2 =
40M4

3Λ
. (24)

The metric tensor of the transverse space (8) is

λ =
9ε4

(3ε2 + r2)2
. (25)

Note that it does not depend on a. In [10] it was shown that the solution
given by (22) and (25) satisfied the condition of classical stability that the
total momentum of the brane matter in the direction of the extra dimensions
be zero [13]. Even though the coordinate r runs from 0 to ∞ the proper
distance along r is finite

s =
∫

ds =
∫

∞

0

√

λ(r)dr =
∫

∞

0

3ε2

3ε2 + r2
dr =

π
√

3ε

2
(26)

Thus this solution is more closely related to the two brane model with a finite
distance between the branes (first reference in [3]) rather than the one brane
model with an infinite extra dimension ([2] and second reference in [3]).

Using (20), (25) and the relationship (8) to integrate the gravitational
part of the action integral (1) over the extra coordinates gives [9, 10]

Sg =
M4

2

∫

dx6

√

−6g 6R =
M4

2
ε2π(a2 + a+ 1)

∫

dx4
√
−η R , (27)
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R and η are the scalar curvature and determinant, in four dimensions.
The formula for the effective Planck scale in our model, which is two

times the numerical factor in front of the last integral in (27)

m2

P l = M4πε2(a2 + a+ 1) , (28)

is similar to those from the “large” extra dimensions model [1]. The dif-
ferences are, the presence of the value of gravitational potential at infinity,
a, in (28), and that the radius of the extra dimensions is replaced by the
brane width ε, which, as seen from (24), is expressed by the ratio of the
fundamental scale M and the cosmological constant Λ.

The normalization condition for a physical field, that its action integral
over the extra coordinates r, θ converges, is also the condition for its local-
ization. As was shown in [9] Newtonian gravity is localized on the brane,
since the action integral for gravity, (27), is convergent over the extra space.
However, the wave-functions of a localized matter field can be spread out
from the brane more widely then the brane width ε. In order not to have
contradictions with experimental facts, such as charge conservation [7], the
parameters of the model must be chosen in a proper way.

When wave-functions of matter fields in six dimensions are peaked near
the brane in the transverse dimensions their wave-functions on the brane can
be factorized as

Ξ(xA) =
ξ(xν)

κ
, (29)

where the parameter κ is the value of the constant zero mode with the di-
mension of length. These parameters can be found from the normalization
condition for zero modes

∫

2π

0

dθ
∫

∞

0

dr
√

−6g
1

κ2
=

√
−η , (30)

which also guarantees the validity of the equivalence principle for different
kinds of particles.

Let us consider the situation with the localization of particular matter
fields. If we assume that the zero mode of a spin-0 field, Φ, in six dimensions
is independent of the extra coordinates its action takes the form [9, 10]

SΦ =
∫

d6x
√

−6g 6LΦ(xA) =
ε2π(a2 + a+ 1)

κ2

Φ

∫

d4x
√
−ηLΦ(xν) , (31)
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where LΦ(xν) is the ordinary 4-dimensional Lagrangian of the spin-0 field
and κΦ is value of the constant zero mode. The integral over r, θ in (31) is
finite and the spin-0 field is localized on the brane.

The action for a vector field in the case of constant extra components
(Ai = const) also reduces to the 4-dimensional Yang-Mills action multiplied
an integral over the extra coordinates [9, 10]

SA =
∫

d6x
√

−6g 6LA(xB) =
3ε2π

κ2

A

∫

d4x
√
−ηLA(xν) , (32)

where κA is the value of the zero mode of the vector field. The extra integral
in (32) is also finite and the gauge field is localized on the brane.

The factorization of the zero mode of a 6-dimensional spinor field in the
ansatz (3) is different from the definition (29), having instead the form [9]

Ψ(xA) =
ψ(xν)

κΨφ2 (rφ′)1/4
, (33)

where κΨ is a normalization constant. Integrating the 6-dimensional action
of fermions over the extra coordinates, using (22), yields [9, 10]

SΨ =
∫

d6x
√

−6g 6LΨ(xA) =
3π2ε2

κ2
Ψ

√

2a(a− 1)

∫

d4x
√
−ηLΨ(xν) , (34)

where LΨ(xν) is the 4-dimensional Dirac Lagrangian. The extra 1/φ depen-
dence in the second integral of (34) comes from the tetrad functions with
upper index in the definition of the Dirac gamma matrices for the ansatz (3).
The integral in (34) over r and θ is finite and Dirac fermions are localized.

Equating the coefficients of action integrals (31), (32) and (34) to 1,
to satisfy the normalization condition (30), and guarantee the equivalence
principle for gravity, we find the zero mode values for spin 0, 1 and 1/2 fields

κ2

Φ
= πε2(a2 + a+ 1) , κ2

A = 3πε2 , κ2

Ψ
=

3π2ε2
√

2a(a− 1)
, (35)

which are used to parameterize the 4-dimensional fields in the Lagrangians.
Within our model we now want to find the the positions where the zero

modes are localized as well as the localization radii of the different fields.
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From (31) the zero mode wave-function of the scalar field in flat space
can be defined as

Φ0(r) =

√

2πrφ2λ

κ2

Φ

=

√
2π3ε2

κΦ

√
r
(3ε2 + ar2)

(3ε2 + r2)2
, (36)

where κΦ has the value (35). Function (36) is zero at infinity (r → ∞) and
on the brane (r = 0) and has a maximal value at some localization distance,
dΦ, between the brane (r = 0) and infinity (r = ∞). This localization
distance, dΦ, and the localization radius rΦ, can be found by equating the
first and second derivatives (to find the maximum and inflection point of the
function) of (36) to zero respectively. For the localization distance this yields

d2

Φ
=
(

ε2(5a− 7 +
√

49 − 58a+ 25a2)
)

/2a. From this formula we see that

since a > 1 the maximum of the wave-function of scalar fields (36) is located
outside the brane dΦ > ε. Setting the second derivative of (36) to zero gives
5ar6 +(63− 66a)ε2r4 − (102− 45a)ε4r2− 9ε6 = 0. This is an effectively cubic
equation for r2, which has one real and two complex solutions. The radius,
rΦ, of the zero mode scalar wave-function is given by the real solution to this
cubic equation. The lengthy expressions of the real solution can be obtained
using a symbolic mathematics program such as Mathematica.

From (32) the wave-function of the vector field zero mode takes the form

A0(r) =

√

2πrλ

κ2

A

=

√
2π3ε2

κA

√
r

3ε2 + r2
. (37)

This function is also zero on the brane and at the infinity, and has a maximal
value at some distance, dA, in between. Again setting the first and second

derivatives of (37) to zero we find dA = ε , and rA =

√

(

ε2(9 + 4
√

6)
)

/5 ≈
1.9ε. So the peaks of the vector wave-functions are located exactly at the
edge of the brane, r = ε and the radius of localization is approximately 2ε.

For the fermionic zero modes from (34) we have

ψ0(r) =

√

√

√

√

2πρ2

κ2
Ψ

(

φ′

rφ2

)1/2

=

[

54π2ε6

κ4
Ψ
(a− 1)

]1/4
1√

3ε2 + ar2
. (38)

This function is zero at infinity, but unlike the wave-functions of the scalar
and vector zero modes, the peak of the fermion wave-function coincides with
brane location, r = 0. From the inflection point of the function (38), which
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is found by equating the second derivative of (38) to zero, we obtain the

localization radius for fermions rΨ = ε
√

3

2a
. Since a > 1 this formula indicates

that the fermionic wave-functions are sharply peaked on the brane.
To summarize, we have shown that for a realistic form of the brane stress-

energy, there exists a static, non-singular solution of the 6-dimensional Ein-
stein equations, which provides a gravitational trapping of 4-dimensional
gravity and matter fields on the brane. An essential feature of the model is
that different kinds of matter fields have different localization distances from
the brane. This property is in principle experimentally testable.
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