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Abstract

The problem of construction of low-energy effective action in N =
3 SYM theory is considered within the harmonic superspace (HSS)
approach. The low-energy effective action is supposed to be a gauge-
and scale-invariant functional in N = 3 HSS reproducing the term
F 4/φ4 in components. This functional is found as a scale-invariant
generalization of the F 4-term in N = 3 supersymmetric Born-Infeld
action.

1 Introduction

Extended supersymmetric field theories play the important role in modern
high-energy theoretical physics due to their beautiful classical and quantum
properties and close relations to string/brane theory. One of the most pop-
ular examples is N = 4 gauge theory, quantum aspects of which attracts
much attention. The symmetries of this theory are so rich (N = 4 supercon-
formal symmetry) that many properties of this model can be proved on the
symmetry grounds only.

In this paper we study the model of N = 3 super Yang-Mills formulated
in N = 3 harmonic superspace [1]. This model, like N = 4 SYM, is known
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to be finite [2] and superconformally invariant [3]. Moreover, N = 3 SYM
model describes the dynamics of the same multiplet of physical field as N = 4
one (see e.g. book [4] for a review). Therefore it can be considered as an
alternative off-shell extension of N = 4 model while on-shell they both have
equivalent dynamics. However, the structure of low-energy effective action in
N = 3 SYM model was not studied as yet. As another evidence in favour of
usefulness of the N = 3 HSS approach, it was recently shown [5] that N = 3
SYM theory in harmonic superspace is naturally generated from superstring
theory.

It is well known [6, 7] that the leading term in the low-energy effective
action of N = 4 SYM model in the sector of N = 2 vector multiplet has
the form

∫
d4xF 2F̄ 2

(φ̄φ)2
, where Fαβ = ∂αα̇Aα̇

β + ∂βα̇Aα̇
α is the Abelian strength

field and φ is the scalar field corresponding to N = 2 vector multiplet.
Complete N = 4 supersymmetric generalization of the low-energy effective
action including both vector fields and hypermultiplets was given in [8], the
leading bosonic component of this action is

∫
d4x

F 2F̄ 2

(φ̄iφi)2
, (1)

where φi is SU(3) triplet of scalar fields. Since the models of N = 3 and N =
4 SYM are equivalent on-shell, we expect that the term (1) is also leading
in the effective action of N = 3 SYM model. Therefore it is interesting to
find N = 3 superfield action reproducing the expression (1) in the component
expansion. One can expect that such an action corresponds to the low-energy
effective action of N = 3 SYM model.

An important step in understanding the possible structure of the effective
action in N = 3 gauge theory was the construction of N = 3 supersymmetric
Born-Infeld action [9] where it was shown that there exists a natural descrip-
tion of the F 4 term (and all higher-order ones) by unconstrained N = 3
superfields in harmonic superspace. We suppose that the low-energy effec-
tive action of N = 3 gauge theory should correspond to a scale invariant
generalization of the corresponding BI-theory. In this work we propose some
possible form of such a functional satisfying the conditions of supersymmet-
ric, gauge and scale invariances and reproducing the term (1) in components.

This talk is a review of our recent results published in [10].
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2 N = 3 multiplets and actions in harmonic

superspace

The N = 3 HSS was introduced in ref. [1] to construct an off-shell superfield
formulation of N = 3 SYM model. The basics of the harmonic superspace
method are exposed in book [11]. Throughout this paper we follow the
conventions of recent works [9, 10].

The N = 3 HSS [3, 11] is defined as the superspace with coordinates
{Z, u}, where Z = {xαα̇, θα

i , θ̄iα̇} 1 is a set of standard N = 3 coordinates
and u are the harmonics parameterizing the coset SU(3)/U(1) × U(1). We
consider the harmonics uI

i and their conjugate ūi
I (I = 1, 2, 3) as SU(3)

matrices
uI

i ū
i
J = δI

J , uI
i ū

j
I = δj

i , εijku1
i u

2
ju

3
k = 1. (2)

The harmonic superspace {Z, u} contains the so called analytic subspace
with the coordinates {ζA, u} = {xαα̇

A , θα
2 , θα

3 , θ̄1α̇, θ̄2α̇, u} where

xαα̇
A = xαα̇ − 2i(θα

1 θ̄1α̇ − θα
3 θ̄3α̇) , θα

I = θα
i ūi

I , θ̄Iα̇ = θ̄α̇iuI
i . (3)

The analytic superspace plays an important role in harmonic superspace
approach since it is closed under supersymmetry and N = 3 SYM action is
written in analytic coordinates.

The harmonic superspace is equipped with Grassmann covariant deriva-
tives DI

α, D̄Iα̇ and harmonic covariant ones DI
J which form the su(3) algebra

(see [3, 11] for details). For example, the derivatives which define the analytic
superfields are

D1
α =

∂

∂θα
1

, D̄3α̇ = −
∂

∂θ̄3α̇
. (4)

Acting on any analytic superfield, the derivatives (4) give zero. This is similar
to the chiral superfields which are annihilated by the corresponding chiral
derivatives.

There are two multiplets of analytic superfields which are important for
us. The first one is the multiplet of N = 3 gauge prepotentials V 1

2 , V 2
3 , which

are complex (mutually conjugate) analytic superfields. Physical bosonic com-

1We denote by small Greek symbols the SL(2,C) spinor indices, α, α̇, . . . = 1, 2; the
small Latin letters are SU(3) indices, i, j, . . . = 1, 2, 3.
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ponent fields are contained in the prepotentials as [1]

V 2
3 = [(θ̄1θ̄2)u2

k − (θ̄2)2u1
k]φ

k + θα
3 θ̄2α̇Aαα̇ − iθα

2 θβ
3 (θ̄2)2Hαβ

+spinors and auxiliary fields,

V 1
2 = −(̃V 2

3 ) = −[(θ2θ3)ū
k
2 − (θ2)

2ūk
3]φ̄k + θα

2 θ̄1α̇Aαα̇

+i(θ2)
2θ̄1α̇θ̄2β̇H̄α̇β̇ + spinors and auxiliary fields.

(5)

Here, φi, φ̄i are complex scalar fields, Aαα̇ is a vector gauge field, Hαβ, H̄α̇β̇

are the auxiliary fields which ensure the correct structure of the gauge field
sector of the theory [9]. The prepotentials V 1

2 , V 2
3 are used in the formulation

of N = 3 SYM model in harmonic superspace. For example, the quadratic
(free) N = 3 SYM action is

S2[V ] = −
1

4
tr

∫
dζ(33

11)du [V 2
3 D1

3V
1
2 +

1

2
(D1

2V
2
3 − D2

3V
1
2 )2]. (6)

The integration in (6) is performed over analytic superspace (dζ(33
11)du is the

integration measure on N = 3 analytic HSS).
The component form of the action S2 in the sector of gauge fields is [9]

S2 =

∫
d4x[V 2 + V̄ 2 − 2(V̄ F̄ + V F ) +

1

2
(F 2 + F̄ 2)], (7)

where
Vαβ = 1

4
(Hαβ + Fαβ), V̄α̇β̇ = 1

4
(H̄α̇β̇ + F̄α̇β̇),

F 2 = F αβFαβ, V 2 = V αβVαβ, FV = F αβVαβ.
(8)

The auxiliary fields Vαβ, V̄α̇β̇ can be eliminated by their algebraic classical
equations of motion

Vαβ = Fαβ, V̄α̇β̇ = F̄α̇β̇. (9)

As a result, the free classical action (7) takes the form of the usual Maxwell
action

S2 = −
1

2

∫
d4x(F 2 + F̄ 2). (10)

Another important N = 3 multiplet is described by N = 3 superfield
strengths which are expressed through prepotentials as

W23 = 1
4
D̄3α̇D̄α̇

3 V 3
2 , W̄ 12 = −1

4
D1αD1

αV 2
1 ,

W12 = D3
1W23, W̄ 23 = −D3

1W̄
12,

W13 = −D2
1W23, W̄ 13 = D3

2W̄
12.

(11)
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Here V 2
1 , V 3

2 are non-analytic prepotentials which are the solutions of zero-
curvature equations [9]

D2
1V

1
2 = D1

2V
2
1 , D3

2V
2
3 = D2

3V
3
2 . (12)

The superfields (11) have the following component structure in the sector of
physical bosons [12]

W23 = u1
i φ

i(xA+) + 4iθα
2 θβ

3 Vαβ(xA+)
+spinors and auxiliary fields,

W̄ 12 = ūi
3φ̄i(xA−) + 4iθ̄1α̇θ̄2β̇V̄α̇β̇(xA−)

+spinors and auxiliary fields,

(13)

where xαα̇
A±

= xαα̇
A ± 2iθα

2 θ̄2α̇.
The strength superfields (11) are used in construction of N = 3 supersym-

metric Born-Infeld action [9]. For example, the quartic term of the N = 3
BI action is described by the following superfield action

S4 =
1

32

∫
dζ(33

11)du
(W̄ 12W23)

2

X2
. (14)

This action produces the first nontrivial term

1

2

∫
d4x

F 2F̄ 2

X2
(15)

in the Born-Infeld action.

3 Construction of the leading term in N = 3

SYM low-energy effective action

In this Section we construct a manifestly N = 3 supersymmetric low-energy
effective action containing the term F 4/φ4 in the bosonic sector.

N = 3 SYM theory is known to be a superconformal field theory [3], like
the N = 4 SYM one. Moreover, both these models describe the dynamics
of the same multiplet of physical fields and therefore are on-shell equivalent
[4]. The effective action of N = 3 SYM model should be scale invariant.
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The transformations of dilatations (scale invariance) and γ5-symmetry (R-
symmetry) act on the coordinates of harmonic superspace and superfield
strengths as follows

δxm
A = axm

A , δθα
I =

1

2
(a + ib)θα

I , δθ̄Iα̇ =
1

2
(a − ib)θ̄Iα̇

δWIJ = (−a + ib)WIJ , δW̄ IJ = −(a + ib)W̄ IJ . (16)

We expect that a scale and γ5-invariant generalization of the action (14)
should correspond to the low-energy effective action of N = 3 SYM model.
In components such an action should reproduce the scale and γ5-invariant
generalization of (15), that is (1). Note that exactly this term is leading in
the low-energy effective action of N = 4 SYM model [6, 7]. Thus we wish to
construct a generalization of the action (14) which would respect the scale-
and γ5-invariances.

To pass from (15) to the scale invariant component action (1), one should
replace the dimensionful constant X by the function of scalar fields (φiφ̄i).
Therefore, to obtain a scale invariant generalization of the superfield action
(14) we have to replace the constant X by some superfield expression hav-
ing the same dimension and containing φiφ̄i as the lowest component. The
suitable expression is

W̄ IJWIJ = W̄ 12W12 + W̄ 23W23 + W̄ 13W13 . (17)

Indeed, the component expansion of this superfield starts with the scalars
(see [12] for details)

W̄ IJWIJ |θ=θ̄=0 = φiφ̄i . (18)

The expression (17) cannot be naively put into the integral in (14) in
place of the constant X. The reason is that the superfield (W̄ IJWIJ) is not
analytic since the superfield strengths W̄ 23, W̄ 13, W12, W13 are not analytic,
while the integration in (14) goes over the analytic superspace. Therefore we
have to rewrite the action (14) in full N = 3 HSS and then to insert W̄ IJWIJ

into the integral.
The action (14) in the full N = 3 HSS is written as

S4 =
1

32

∫
d4xd12θdu

1

X2

[
(D̄1)

2

4�
(W23)

2

] [
(D3)2

4�
(W̄ 12)2

]
. (19)
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Replacing the constant X by the superfield W̄ IJWIJ in (19), we arrive at the
action

Sscale−inv
4 = α

∫
d4xd12θdu

1

(W̄ IJWIJ)2
×

×

[
(D̄1)

2

4�
(W23)

2

] [
(D3)2

4�
(W̄ 12)2

]
, (20)

where α is some dimensionless constant. This constant cannot be fixed on
the symmetry grounds only. One of the possible ways of finding α is a
straightforward calculation of low-energy effective action in the framework
of quantum field theory. Since the action (20) includes no any dimensional
constants, it is scale invariant.

Let us study the component structure of the action (20). Note that the
superfield strengths entering the action contain a multiplet of physical fields
as well as an infinite number of auxiliary fields. We are interested in the
component structure of the action (20) in the sector of scalar and vector
physical fields. For this purpose we neglect all the derivatives of scalar fields
and Maxwell field strength. Such an approximation is sufficient for retrieving
the term F 4/φ4 while going to components. Therefore we use the following
ansatz for the superfield strengths

ˆ̄W 12 = φ̄3 + ω̄12, Ŵ12 = φ3 + ω12,
ˆ̄W 23 = φ̄1 + ω̄23, Ŵ23 = φ1 + ω23,
ˆ̄W 13 = −φ̄2 + ω̄13, Ŵ13 = −φ2 + ω13,

(21)

where
φ̄I = ūi

Iφ̄i, φI = uI
i φ

i ,

ω̄IJ = 4iθ̄Iα̇θ̄Jβ̇V̄α̇β̇ , ωIJ = 4iθα
I θβ

JVαβ.
(22)

The symbol “hat” indicates that we consider only scalar and vector bosonic
fields and discard any auxiliary fields. In the ansatz (21) and (22) the action
(20) contains only local terms

Ŝscale−inv
4 = α

∫
d4xd12θdu

(θ1)
2(θ̄3)2

( ˆ̄W IJŴIJ)2
( ˆ̄W 12Ŵ23)

2. (23)

Performing the integration over Grassmann and harmonic variables in (23),
we obtain

Ŝscale−inv
4 =

α0

2

∫
d4x

V 2V̄ 2

(φiφ̄i)2
, (24)
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where α0 = 32
15

α.
Now we should express the auxiliary fields Vαβ, V̄α̇β̇ through the physical

field strengths Fαβ, F̄α̇β̇ from the action

Ŝ2 + Ŝscale−inv
4 =

∫
d4x

[
V 2 + V̄ 2 − 2(V̄ F̄ + V F )

+
1

2
(F 2 + F̄ 2) +

α0

2

V 2V̄ 2

(φiφ̄i)2

]
. (25)

The corresponding equations of motion for the auxiliary fields Vαβ, V̄α̇β̇ are

2Fαβ = Vαβ

[
2 +

α0

(φiφ̄i)2
V̄ 2

]
,

2F̄α̇β̇ = V̄α̇β̇

[
2 +

α0

(φiφ̄i)2
V 2

]
. (26)

Eqs. (26) define the auxiliary fields Vαβ, V̄α̇β̇ as functions of Fαβ, F̄α̇β̇. The
solution to these equations can be represented as a series over the Maxwell
field strengths:

Vαβ = Fαβ

[
1 −

α0

2(φiφ̄i)2
F̄ 2 + O(F 3)

]
,

V̄α̇β̇ = F̄α̇β̇

[
1 −

α0

2(φiφ̄i)2
F 2 + O(F 3)

]
. (27)

Substituting the solutions (27) into the action (24), we find

Sscale−inv
4 =

1

2

∫
d4x

[
F 2F̄ 2

(φiφ̄i)2
−

1

2

F 2F̄ 2

(φiφ̄i)4
(F 2 + F̄ 2) + O(F 8)

]
, (28)

where we set α0 = 1 for simplicity. As a result, we see that the main bosonic
component in the action (20) is exactly the term F 4/φ4 (1) which is the first
nontrivial term in the N = 3 SYM model. The action (28) contains also
all higher-order terms starting with F 6. However, the consideration of these
terms requires the special attention (the corresponding analysis is performed
in [10]).

Let us finish this Section with several comments concerning the superfield
action (20).
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• This action contains the nonlocal operator �
−1. However, as is shown

above, the leading low-energy term in the component action is local.

• From the very beginning there is a freedom in distributing the deriva-
tives among different factors in the actions (19) and (20). However, the
local part of the action (20) actually does not depend on the specific
pattern of such a distribution.

• As follows from eq. (28), the action Sscale−inv
4 contains the term (1) in

its component expansion. We observe that in this expression the scalar
fields appear in a single SU(3) invariant combination. An analogous
result was earlier obtained in ref. [8] for the full low-energy effective
action of N = 4 SYM in the N = 2 HSS approach. The advantage of
N = 3 formalism is that all scalar fields from the very beginning are
included into a single N = 3 multiplet, while in the N = 2 superspace
language the scalar fields are distributed between vector multiplet and
hypermultiplet.

• The off-shell action (20) is manifestly supersymmetric, gauge invariant
and scale invariant. It also respects the invariance under the γ5 and
SU(3) transformations. Therefore, it can be considered as a candidate
for the low-energy effective action in N = 3 SYM model.

4 Summary

In this paper we analyzed the possible off-shell structure of low-energy effec-
tive action of N = 3 SYM model written in N = 3 harmonic superspace.
This action was obtained as an N = 3 superfield generalization of the term
F 4/φ4 which is leading in the low-energy effective action. It is written as
a functional built out of the superfield strengths in full N = 3 superspace.
This functional is manifestly supersymmetric, gauge invariant, scale and γ5-
invariant and corresponds to a scale invariant generalization of 4-th order
term in the N = 3 supersymmetric BI action.

In conclusion, let us point out once again that the effective action (20) was
found solely by employing the symmetries of the model and the requirement
that it produces the F 4/φ4 term in components. This action was determined
up to an arbitrary numerical coefficient. The important problem now is to
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reproduce the action (20) by direct quantum field theory computations in
N = 3 HSS.
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