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Abstract

The Painlevé test is very useful to construct not only the Laurent-
series solutions, but also the elliptic and trigonometric ones. To find
the elliptic solutions one can transform a nonlinear polynomial differ-
ential equation in a nonlinear algebraic system in parameters of the
Laurent-series solutions. This procedure can be automatized. The
Painlevé test can also assist to solve the inverse problem: to find the
form of a polynomial potential, which corresponds to the required type
of solutions.

1 INTRODUCTION

The investigations of the exact special solutions of nonintegrable systems
play an important role in the study of nonlinear physical phenomena. When
some mechanic or field theory problem is studied, time is assumed to be real,
whereas the integrability of motion equations is connected with the behavior
of their solutions as functions of a complex coordinate. Consideration of
the motion equation on complex (time) plane can help to determine type of
possible real solutions. The analysis of solutions in the neighborhood of their
singular points (the Painlevé test) is very useful to construct the elliptic and
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trigonometric solutions. To do this one has to solve only algebraic equations,
the algorithm [1] can be automatized due to computer algebra systems [2].

The Painlevé analysis assists also to solve the inverse problem: to define
a polynomial potential, corresponding to the required type of solutions. In
this paper we consider a few examples, which show how the local analysis can
be used. In the next section we formulate the Painvelé property. In the third
section we consider the five-dimensional gravitational model with a scalar
field and seek the correspondence between the scalar field potential and type
of this field. In the fourth section we compare the method of construction of
trigonometric and elliptic solutions, based on the Painlevé analysis [1], with
traditional ones.

2 THE PAINLEVÉ PROPERTY

Let us formulate the Painlevé property for ordinary differential equations
(ODE’s). Solutions of a system of ODE’s are regarded as analytic functions,
maybe with isolated singular points [3]. A singular point of a solution is said
critical (as opposed to noncritical) if the solution is multivalued (single-
valued) in its neighborhood and movable if its location depends on initial
conditions. The general solution of an ODE of order N is the set of all
solutions mentioned in the existence theorem of Cauchy, i.e. determined
by the initial values. It depends on N arbitrary independent constants. A
special solution is any solution obtained from the general solution by giving
values to the arbitrary constants. A singular solution is any solution which
is not special, i.e. which does not belong to the general solution. A system of
ODE’s has the Painlevé property if its general solution has no movable
critical singular point [3, 4].

There exist two distinctions between the structure of solutions of linear
differential equations and nonlinear ones. Linear ODE’s have no singular
solution and their general solutions have no movable singularity.

Investigations of many dynamical systems show that a system is com-
pletely integrable for such values of parameters, at which it has the Painlevé
property. At the same time the integrability of an arbitrary system with
the Painlevé property has yet to be proved. There is not an algorithm for
construction of the additional integral by the Painlevé analysis. There exist
many examples of integrable systems without the Painlevé property.

The Painlevé test is any algorithm, which checks some necessary con-
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ditions for a differential equation to have the Painlevé property. The original
algorithm, developed by P. Painlevé and used by him to find all the sec-
ond order ODE’s with Painlevé property, is known as the α-method. The
method of S.V. Kovalevskaya [5] is not as general as the α–method, but
much more simple. The remarkable property of this test is that it can be
checked in a finite number of steps. This test can only detect the occurrence
of logarithmic and algebraic branch points. To date there is no general finite
algorithmic method to detect the occurrence of essential singularities1. In
1980, developing the Kovalevskaya method further, M.J. Ablowitz, A. Ra-
mani and H. Segur [7] constructed a new algorithm of the Painlevé test for
ODE’s. This algorithm appears very useful to find solutions as a formal
Laurent series. First of all, it allows to determine the dominant behavior
of a solution in the neighborhood of the singular point t0. If the solution
tends to infinity as (t − t0)

β, where β is a negative integer number, then
substituting the Laurent series expansions one can transform nonlinear dif-
ferential equations into a system of linear algebraic equations on coefficients
of the Laurent series. All solutions of an autonomous system depend on the
arbitrary parameter t0, which characterizes the singular point location. If a
single-valued solution depends on other parameters, then some coefficients of
its Laurent series have to be arbitrary and the corresponding systems have
to have zero determinants. The numbers of such systems (named resonances

or Kovalevskaya exponents) can be determined due to the Painlevé test.

3 FIVE-DIMENSIONAL GRAVITATIONAL

MODEL WITH A SCALAR FIELD

To show how the analysis of singular behavior of solutions can assist to find
the form of potential, let us consider the model of gravity field interacting
with a single scalar field in five-dimensional space-time [8, 9]. The action is

S =

∫

M

d4xdr
√

|det gµν|

(

−
R

4
+

1

2
(∂φ)2 − V (φ)

)

, (1)

where M is the full five-dimensional space-time. The most general metric
with four-dimensional Poincaré symmetry is

ds2 = e2A(r)(dx2
0 − dx2

1 − dx2
2 − dx2

3) − dr2.

1Different variants of the Painlevé test are compared in [6, R. Conte paper]
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If the scalar field depends only on additional coordinate: φ = φ(r), then
the independent equations of motion are

H ′ = −
2

3
(φ′)2, (2)

H2 = −
1

3
V (φ) +

1

6
(φ′)2, (3)

where H ≡ A′ ≡ dA
dr

and φ′ ≡ dφ

dr
.

Let us analyse the correspondence between type of the scalar field φ(r)
and the potential V (φ). We assume that V (φ) is a polynomial of φ. If at
singular point

φ(r) ∼
1

rm
,

then from (2) we obtain

H ′ ∼
1

r2m+2
=⇒ H ∼

1

r2m+1
.

From (3) it follows that

V (φ) ' V

(

1

rm

)

∼
1

r4m+2
. (4)

It means that solutions with poles proportional 1/r can be obtained only if
the power of the polynomial potential V (φ) is equal to six2. For example, let
φ1(r) = tanh(r), for real r this function has no singular point, but equations
(2) and (3) are autonomous ones, so if φ1(r) is a solution, then φ1(r − r0),
where r0 is an arbitrary complex constant, is a solution too. Hence, the
function φ1(r) cannot be a solution for the standard φ4 potential:

V (φ) = (φ2 − 1)2. (5)

In [8] the explicit form of the sixth order polynomial potential V (φ),
which corresponds to φ1(r) has been found. If φ(r) is, for example,

φ(r) =

N
∑

k=1

tanh(r − rk),

2Similar solutions can exist, surely, for nonpolynomial potentials as well.
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where N is some natural number and rk are some constants, then the explicit
form of the corresponding potential is not known, but from the Painlevé
analysis it follows that if V (φ) is a polynomial, then its degree has to be
equal to 6. Analogously one can show that if solutions tend to infinity as
1/r2, then the power of V (φ) is equal to 5. If solutions tend to infinity as
1/rk, where k is a natural number greater than two, then V (φ) can not be a
polynomial. In conclusion of this section we say a few words about explicit
solutions and the correspondence between φ and V (φ). Following [8] we
assume that H(r) is a function of φ:

H(r) = −
1

3
W (φ).

It is straightforward to verify that equations (2) and (3) are equivalent to

dφ(r)

dr
=

1

2

dW (φ)

dφ
, (6)

(

dW (φ)

dφ

)2

−
1

3
W (φ)2 − V (φ) = 0. (7)

Unfortunately eq. (7) can not be solved analytically. For polynomial
V (φ) it is possible, if possible, to find only special solutions: W (φ) in the
polynomial form3.

Contrary to a scalar field theory without gravitational field, there is not
one to one correspondence between the form of the scalar field φ(r − r0)
and potential V (φ). The form of the scalar field is defined by dW

dφ
, so one

can add a constant to W (φ) and obtain new V (φ) for the same φ(r). On
the other hand, for given V (φ) we have not one-, but two-parameter set of
functions φ(r).

4 SEARCH OF SPECIAL SOLUTIONS

4.1 The generalized Hénon-Heiles system

To analyse the methods of construction of special single-valued solutions let
us consider the generalized Hénon–Heiles system with an additional non-

3For example, W (φ) can not be a polynomial if V (φ) = (φ2 − 1)2 and we don’t know
a solution for this potential.
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polynomial term, which is described by the Hamiltonian:

H =
1

2

(

x2
t + y2

t + λ1x
2 + λ2y

2
)

+ x2y −
C

3
y3 +

µ

2x2

and the corresponding system of the motion equations:

{

xtt = − λ1x − 2xy +
µ

x3
,

ytt = − λ2y − x2 + Cy2,
(8)

where xtt ≡ d2x
dt2

and ytt ≡ d2y

dt2
, λ1, λ2, µ and C are arbitrary numerical

parameters. Note that if λ2 6= 0, then one can put λ2 = sign(λ2) without
loss of generality. If C = 1, λ1 = 1, λ2 = 1 and µ = 0, then (8) is the initial
Hénon–Heiles system [10].

The function y, solution of system (8), satisfies the following fourth-order
equation, which does not include µ:

ytttt = (2C − 8)ytty − (4λ1 + λ2)ytt + 2(C + 1)y2
t +

+
20C

3
y3 + (4Cλ1 − 6λ2)y

2 − 4λ1λ2y − 4H.
(9)

We note that the energy of the system H is not an arbitrary parameter,
but a function of initial data: y0, y0t, y0tt and y0ttt. The form of this function
depends on µ:

H =
y2

0t + y2
0

2
−

C

3
y3

0 +

(

λ1

2
+ y0

)

(Cy2
0 − λ2y0 − y0tt)+

+
(λ2y0t + 2Cy0y0t − y0ttt)

2 + µ

2(Cy2
0 − λ2y0 − y0tt)

. (1)

This formula is correct only if x0 6= 0. If x0 = 0, what is possible only at
µ = 0, then we can not express x0t through y0, y0t, y0tt and y0ttt, so H is not
a function of the initial data. If y0ttt = 2Cy0y0t − λ2y0t, then eq. (3) with an
arbitrary H corresponds to system (8) with µ = 0, in opposite case eq. (9)
does not correspond to system (8).

The Painlevé test of eq. (9) gives the following dominant behaviors and
resonance structures near the singular point t0 [11]:

1. The function y(t) tends to infinity as b−2(t− t0)
−2, where b−2 = −3 or

b−2 = 6
C

.
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2. For b−2 = −3 (Case 1) the values of resonances are

r = −1, 10, (5 ±
√

1 − 24(1 + C))/2.

In Case 2 (b−2 = 6
C

) r = −1, 5, 5 ±
√

1 − 48/C.
The resonance r = −1 corresponds to an arbitrary parameter t0 (the

location of the singular point). Other values of r determine powers of t (their
values are r− 2), at which new arbitrary parameters can appear as solutions
of the linear systems with zero determinant. For integrability of system (8)
all values of r have to be integer and all systems with zero determinants have
to have solutions at any values of free parameters included in them. It is
possible only in the three known integrable cases [12].

For the search for special solutions, it is interesting to consider such values
of C, for which r are integer numbers either only in Case 1 or only in Case 2.
It has been shown in [12, 13] (for λ2 = 1 and µ = 0) and [11] (for arbitrary
values of parameters) that single-valued three-parameter special solutions
exist in two nonintegrable cases: C = −16/5 and C = −4/3 (λ1 and λ2 are
arbitrary). When the resonance structure is known it is easy to write the
computer algebra program, which finds the Laurent series solutions with an
arbitrary accuracy (for example, we have found 65 coefficients).

4.2 Construction of Global Single-Valued Solutions

The classical method to find special analytic solutions for the generalized
Hénon–Heiles system is the following:

1) Transform system (8) into eq. (9).
2) Assume that y satisfies some first order equation, substitute this equa-

tion in (9) and obtain a nonlinear algebraic system.
3) Solve the obtained system.
This method doesn’t use the result of the Painleve test and the known

Laurent series solutions. It may be difficult to automatize this alhorithm,
because all its steps can be nontrivial.

The algorithm for finding special solutions for ODE’s in the form of a
finite expansion in powers of unknown function ϕ(t−t0) has been constructed
in [14]. The function ϕ(t − t0) and coefficients have to satisfy some system
of ODE, often more simple than an initial one. This method based on the
Painlevé test, it does not transform differential equations to algebraic.
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Differing from the above-mentioned methods, which do not use the Lau-
rent series solutions of the initial nonintegrable system, the method [1] used
them.

It has been proved by Fuchs [15] (see also [3]) that the necessary form
of a polynomial autonomous first order ODE with the single-valued general
solution is

m
∑

k=0

2m−2k
∑

j=0

ajk yjyk
t = 0, a0m = 1, (10)

in which m is a positive integer number and ajk are constants.
The Briot and Bouquet theorem [16] proves that if the general solution of

a polynomial autonomous first order ODE is single-valued, then this solution
is either an elliptic function, or a rational function of eγx, γ being some
constant, or a rational function of x. Note that the third case is a degeneracy
of the second one, which in its turn is a degeneracy of the first one.

The proposed by R. Conte and M. Musette algorithm [1] is the following:
1) Choose a positive integer m and define the first order ODE (10), which

contains unknown constants ajk.
2) Compute coefficients of the Laurent series solutions for (8) or (9) with

some fixed C. The number of coefficients has to be greater than the number
of unknowns.

3) Substituting the obtained coefficients, transform eq. (8) into a linear
and overdetermined system in ajk with coefficients depending on arbitrary
parameters.

4) Eliminate all ajk and obtain the nonlinear system in five parameters:
λ1, λ2, H and two arbitrary coefficients of the Laurent-series solutions.

5) Solve the obtained system.
This method has a few preferences. The first preference is that one does

not need to transform system (8) to the single differential equation either in
y or in x. Moreover at C = −16/5 not x, but x2 may be an elliptic function.
To construct the Laurent series for x2 is easier than to find the fourth order
equation in x2. The main preference of this method is that the number of
unknowns in the resulting algebraic system does not depend on number of
coefficients of the first order equation. For example, eq. (10) with m = 8
includes 60 unknowns ajk, and it is not possible to use the traditional way
to find similar solutions. Using this method we obtain (independently of the
value of m) a nonlinear algebraic system in five variables. It is important that
all these calculations can be automatized due to computer algebra systems.
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The first computer algebra realization has been written in AMP [17] by
R. Conte. His algorithm bases on the α–method of the Painlevé test. Our
Maple realization bases on transformations of the Laurent series [2].

The traditional way has one important preference. It allows to obtain
solutions for an arbitrary C, because one has not to fix value of C to construct
the Laurent series solutions.

The resulting nonlinear algebraic system can be solved using the standard
Gröbner basis method. To obtain the explicit form of the elliptic function,
which satisfies the known first order ODE, one can use the classical method
due to Poincaré, which has been implemented in Maple [18] as the package
”algcurves” [19].

5 CONCLUSION

The Painlevé test is a very useful tool to find single-valued solution in the
analytic form. The procedure can be automatized. The corresponding com-
puter algebra algorithm has been constructed in Maple [2]. Consideration
of the motion equation on complex (time) plane and the use of the Painlevé
test can assist to find a type of polynomial potential, which corresponds to
solution with required type of singularities.

The author is grateful to I.Ya. Aref’eva, R. Conte, V.F. Edneral,
I.P. Volobuev and M.N. Smolyakov for valuable discussions. This work has
been supported by Russian Federation President’s Grant NSh–1685.2003.2
and by the grant of the scientific Program ”Universities of Russia” 03.02.028.
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rentielles, profeesées à Stockholm (septembre, octobre, novembre 1895)
sur l’invitation de S. M. le roi de Suède et de Norwège, Hermann, Paris
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mation and the Hénon–Heiles System. Phys. Lett. A 105 (1984) 387–389

[15] von Fuchs L.: Gesammelte mathematische Werke von L. Fuchs. Hrsg.
von Richard Fuchs und Ludwig Schlesinger. Berlin, Mayer & Müller,
(1904-1909) On-line version: The Cornell Library of Historical Mathe-
matics Monographs, http://historical.library.cornell.edu/

[16] Briot C. A. A., Bouquet J. C.: Theórie des fonctions elliptiques.
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