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Abstract

The symmetry between the creation of pairs of massless bosons or
fermions by accelerated mirror in 1+1-space and the emission of sin-
gle photons or scalar quanta by electric or scalar charge in 3+1-space
embraces not only the processes of real quanta radiation. The general
relation of Bogoliubov coefficients, describing the processes induced by
the mirror, to Fourier components of current or charge density means
that the spin of any disturbances bilinear in scalar or spinor field (i.e.
pairs) coincides with the spin of quanta emitted by the electric or
scalar charge. The mass and invariant momentum transfer of these
pairs are essential for the integral connections between propagarors of
a pair in 1+1-space and a single particle in 3+1-space. This allows
to extend the symmetry to the processes of the mirror and the charge
interactions with the fields carrying spacelike momenta. These fields
accompany their sources and define the Bogoliubov matrix coefficients
αB,F

ω′ω . It is shown that the Lorentz-invariant traces trαB,F describe
the vector and scalar interactions of accelerated mirror with a uni-
formly moving detector. This interpretation rests essentially on the
relation between the propagators of the waves with spacelike momenta
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in 2- and 4-dimensional spaces. The tr αB,F for two important mir-
ror’s trajectories with subluminal velocities of the ends are found in
explicitly analytical form and are in accordance with general consid-
eration. The symmetry predicts one and the same value e0 =

√
~c for

electric and scalar charge in 3+1-space. The arguments are adduced
in favour of that this value and the corresponding value α0 = 1/4π for
fine structure constant are the bare, nonrenormalized values.

1 Introduction

The Hawking’s mechanism for particle production at the black hole formation
is analogous to the emission from an ideal mirror accelerated in vacuum [1].
In its turn there is a close analogy between the radiation of pairs of scalar
(spinor) quanta from accelerated mirror in 1+1 space and the radiation of
photons (scalar quanta) by an accelerated electric (scalar) charge in 3+1
space [2,3]. Thus all these processes turn out to be mutually related. In
problems with moving mirrors the in-set φin ω′ , φ∗

inω′ and out-set φout ω, φ∗
out ω

of the wave equation solutions are usually used. For massless scalar field they
look as follows:

φin ω′(u, v) =
1√
2ω′

[e−iω′v − e−iω′f(u)],

φout ω(u, v) =
1√
2ω

[e−iωg(v) − e−iωu], (1)

with zero boundary condition φ|traj = 0 on the mirror’s trajectory. Here
the variables u = t − x, v = t + x are used and the mirror’s (or charge’s)
trajectory on the u, v plane is given by any of the two mutually inverse
functions vmir = f(u), umir = g(v).

For the in- and out-sets of massless Dirac equation solutions see [3]. Dirac
solutions differ from (1) by the presence of bispinor coefficients at u- and v-
plane waves. The current densities corresponding to these solutions have
only tangential components on the boundary. So, the boundary condition
both for scalar and spinor field is purely geometrical, it does not contain any
dimentional parameters.

The Bogoliubov coefficients αω′ω, βω′ ω appear as the coefficients of the
expansion of the out-set solutions in the in-set solutions; the coefficients
α∗

ω′ω, ∓βω′ω arise as the coefficients of the inverse expansion. The upper and
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lower signs correspond to scalar (Bose) and spinor (Fermi) field. The explicit
form of Bogoliubov coefficients is very simple:

αB
ω′ω, βB∗

ω′ω =

√

ω′

ω

∫ ∞

−∞

dv eiω′v∓iωg(v)

= ±
√

ω

ω′

∫ ∞

−∞

du e∓iωu+iω′f(u). (2)

The αF
ω′ω, βF∗

ω′ω differ from these representations by the changes
√

ω′/ω →
√

g′(v), ±
√

ω/ω′ →
√

f ′(u) under the integral signs.
Then the mean number dn̄ω of quanta radiated by accelerated mirror to

the right semi-space with frequency ω and wave vector ω > 0, and the total
mean number N̄ of quanta are given by the integrals

dn̄B,F
ω =

dω

2π

∫ ∞

0

dω′

2π
|βB,F

ω′ω |2, N̄B,F =

∫

∞
∫

0

dωdω′

(2π)2
|βB,F

ω′ω |2. (3)

These expressions do not contain ~, but their interpretation as mean numbers
of quanta follows from the second-quantized theory.

At the same time the spectra of photons and scalar quanta emitted by
electric and scalar charges moving along the trajectory xα(τ) in 3+1 space
are defined by the Fourier transforms of the electric current density 4-vector
jα(x) and the scalar charge density ρ(x),

jα(k), ρ(k) = e

∫

dτ {ẋα(τ), 1}e−ikαxα(τ),

jα(x), ρ(x) = e

∫

dτ {ẋα(τ), 1}δ4(x − x(τ)), (4)

and are given by the formulae

dn̄
(1,0)
k =

1

~c
{|jα(k)|2, |ρ(k)|2}dk+dk−

(4π)2
,

N̄ (1,0) =
1

~c

∫

∞
∫

0

dk+dk−

(4π)2
{|jα(k)|2, |ρ(k)|2}, (5)

where the upper index in dn̄
(s)
k , N̄ (s), and kα denote the spin and 4-momentum

of quanta,

k2 = k2
1 + k2

⊥ − k2
0 = 0, k2

⊥ = k2
0 − k2

1 = k+k−, k± = k0 ± k1,
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and in (5) it is supposed that the trajectory xα(τ) has only x0 and x1 non-
trivial components, as the mirror’s one.

In contrast to quantities in (3), the dn̄
(s)
k and N̄ (s) contain ~ since the

charge entering into current and charge densities is considered as classical
quantity.

The symmetry between the creation of Bose or Fermi pairs by accelerated
mirror in 1+1 space and the emission of single photons or scalar quanta by
electric or scalar charge in 3+1 space consists, first of all, in the coincidence
of the spectra. If one puts 2ω = k+, 2ω′ = k−, then

|βB
ω′ω|2 =

1

e2
|jα(k+, k−)|2, |βF

ω′ω|2 =
1

e2
|ρ(k+, k−)|2. (6)

So, the spectra coincide as a functions of two variables and a functionals of
common trajectory of a mirror and a charge. The distinction in multiplier
e2 can be removed if one puts e2 = ~c.

2 Symmetry and physical distinction of β∗
ω′ω

and αω′ω

It follows from the second-quantized theory that the absolute pair production
amplitude and the single-particle scattering amplitude are connected by the
relation

〈outω′′ω|in〉 = −
∑

ω′

〈outω′′|ω′in〉 β∗
ω′ω. (7)

It enables to interpret β∗
ω′ω as the amplitude of a source of a pair of the mass-

less particles potentially emitted to the right and to the left with frequences
ω and ω′ respectively [4]. While the particle with frequency ω actually es-
capes to the right, the particle with frequency ω′ propagates some time then
is reflected by the mirror and is actually emitted to the right with altered
frequency ω′′. Then, in the time interval between pair creation and reflection
of the left particle, we have the virtual pair with energy k0, momentum k1,
and mass m:

k0 = ω + ω′, k1 = ω − ω′, m =
√
−k2 = 2

√
ωω′. (8)

Apart from this polar timelike 2-vector kα, very important is the axial
spacelike 2-vector qα,

qα = εαβkβ, q0 = −k1 = −ω + ω′, q1 = −k0 = −ω − ω′ < 0. (9)
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With the help of kα and qα the symmetry between α and β coefficients
becomes clearly expressed:

s = 1, eβB∗
ω′ω = −qαjα(k)

√

k+k−

, eαB
ω′ω = −kαjα(q)

√

k+k−

, (10)

s = 0, eβF∗
ω′ω = ρ(k), eαF

ω′ω = ρ(q). (11)

Note that the equations (4) define the current density jα(k) and the
charge density ρ(k) as the functionals of the trajectory xα(τ) and the func-
tions of any 2- or 4-vector kα. It can be shown that in 1+1-space jα(k) and
jα(q) are the spacelike and timelike polar vectors if kα and qα are the timelike
and spacelike vectors correspondingly.

The boundary condition on the mirror evokes in the vacuum of massless
scalar or spinor field the appearance of vector or scalar disturbance waves
bilinear in massless fields. There are two types of these waves:

1) The waves with amplitude αω′ω (α∗
ω′ω) which carry the spacelike mo-

mentum directed to the left (right), and
2) The waves with amplitude β∗

ω′ω (βω′ω) which carry the timelike mo-
mentum with positive (negative) frequency.

The waves with the spacelike momenta appear even if the mirror is in
rest or moves uniformly (Casimir effect), while the waves with the timelike
momenta appear only in the case of accelerated mirror.

The pair of Bose (Fermi) particles has spin 1 (0) because its source is the
current density vector (charge density scalar), see [5] or the problem 12.15 in
[6].

3 Vacuum-vacuum amplitude 〈out|in〉 = eiW

It follows from the second quantized theory that in vacuum-vacuum ampli-
tude 〈out|in〉 = eiW the Im W B,F is well-defined. According to DeWitt [7],
Wald [8] and others (including myself [4])

2 ImW B,F = ±1

2
tr ln(1 ± β+β) or ± tr ln(1 ± β+β) (12)

correspondingly to the cases when particle is identical or nonidentical to
antiparticle. We confine ourselves by the last case and by the smallness of
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the tr β+β � 1. Then

2 Im W B,F ≈ tr (β+β)B,F ≡
∫

∞
∫

0

dωdω′

(2π)2
|βB,F

ω′ω |2 = N̄B,F . (13)

By using in the integrand of N̄B,F the representations (2) for βB,F , the vari-
ables x∓(τ) and x±(τ ′) instead of u, f(u) and v, g(v), and hyperbolic vari-
ables ρ, θ instead of ω, ω′,

dωdω′ =
1

2
ρdρdθ, ω =

1

2
ρeθ, ω′ =

1

2
ρe−θ,

ρ = 2
√

ωω′, θ = ln

√

ω

ω′
, (14)

one obtains the imaginery part of the causal function in 1+1-space, Im ∆f
2(z, ρ),

after integration over θ, and then the imaginery part of the causal function
in 3+1-space, Im ∆f

4(z, µ), after integration over ρ = m, the variable which
coincides with the mass of virtual pair according to (8). This result is a spe-
cial case of the very important integral relation between the causal functions
of wave equations for d- and d + 2-dimensional space-times [9],

∆f
d+2(z, µ) =

1

4π

∫ ∞

µ2

dm2 ∆f
d(z, m), (15)

The small mass parameter µ = 2
√

ωω′|min 6= 0 is introduced instead of zero
to avoid the infrared divergency in the following. Thus we obtain

2 ImW B,F = Im

∫∫

dτdτ ′

{

ẋα(τ)ẋα(τ ′)
1

}

∆f
4(z, µ),

zα = xα(τ) − xα(τ ′). (16)

We may omit the Im-signs from both of sides of this equation and define
the actions for bose- and fermi-mirrors in 1+1-space as

W B,F =
1

2

∫∫

dτdτ ′

{

ẋα(τ)ẋα(τ ′)
1

}

∆f
4(z, µ). (17)

Compare this with the well known actions for electric and scalar charges in
3+1-space:

W 1,0 =
1

2
e2

∫∫

dτdτ ′

{

ẋα(τ)ẋα(τ ′)
1

}

∆f
4(z, µ). (18)

6



The symmetry would be complete if e2 = 1, i.e. if the fine structure constant
were α = 1/4π. This ”ideal” value of fine structure constant for the charges
would correspond to the ideal, geometrical boundary condition on the mirror.

The appearance in action the causal function ∆f
4(z, µ) has a lucid physical

grounds.
1. The action must represent not only the radiation of real quanta but

also the self-energy and polarization effects. While the first effects are de-
scribed by the solutions of homogeneous wave equation the second ones re-
quire the inhomogeneous wave equation solutions which contain informa-
tion about proper field of a source. Namely such solutions of homogeneous
and inhomogeneous wave equations are the functions (1/2)∆1 = Im ∆f and
∆̄ = Re ∆f .

2. While the appearance of Im ∆f in the imaginary part of the action
(16) is a consequence of mathematical transformation of the integral N̄B,F

(similar to the Plancherel theorem), the function ∆̄ ≡ Re∆f in the real
part of the action is unique if it appears as the real part of the analytical
continuation of the function i Im ∆f (z, µ) to negative z2 that is even in z as
Im ∆f itself.

Both the propagator ∆f
2(z, m) of a virtual pair with mass m = ρ = 2

√
ωω′

in two-dimensional space-time and the mass spectrum of these pairs arise
owing to the transition from the variables ω, ω′ to the hyperbolic variables
ρ, θ, which reflect the Lorentz symmetry of the problem. Further integration
over the mass leads to the propagator ∆f

4(z, µ) of a particle moving in four-
dimensional space-time with the mass µ equal to the least mass of virtual
pairs. Thus, the relation (15) is immanent to the Lorentz symmetry and
the symmetry, connecting the processes in two- and four-dimensional space-
times.

We exemplify here the selfaction changes ∆W1,0 of electric and scalar
charges due to accelerated motion along the quasihyperbolic trajectory

x(t) =
β2

1

w0
− β1

√

β2
1

w2
0

+ t2, β1,2 = ±th
θ

2
,

β12 =
β1 − β2

1 − β1β2
= th θ. (19)

with initial β1 and final β2 velocities at t = ∓∞ and proper acceleration
−w0 at t = 0. The selfaction changes ∆W1,0(θ, λ) are the Lorentz invariant
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functions of two variables θ = Arth β12 and λ = µ2/w2
0 with singularities at

λ = 0 and θ = ±∞.
At λ → 0, θ arbitrary,

∆W1 =
e2

8π2
{π(

θ

th θ
− 1)

+ i[(
θ

th θ
− 1) ln

4(ch θ + 1)2

γ2λ(ch θ − 1)
+ 2 − ln 2 − ch θ R(θ)]}, (20)

∆W0 =
e2

8π2
{π(1 − θ

sh θ
)

+ i[(1 − θ

sh θ
) ln

4(ch θ + 1)2

γ2λ(ch θ − 1)
− 2 + ln 2 + R(θ)]}, (21)

where R(θ) is even function of θ connected with the Euler’s dilogarithm L2(z)
[10],

R(θ) =

∫ ∞

0

dα
ln(ch θ + ch α)

ch θ + ch α
=

L2(1 − e−2θ) + θ2 − ln 2 · θ
sh θ

. (22)

For the case θ → ±∞, λ arbitrary, considered in [11,12],

∆W1,0 = −| θ| e2

8π2
S1,0(λ),

Sn(λ) = (−1)n+1

∫ ∞

0

dz e−iλ/2z [eiz Kn(iz) −
√

π

2iz
], (23)

Kn(iz) is the Mcdonald function. At λ → 0

S1(λ) = −π − i(ln
4

γ2λ
− 1), S0(λ) = −i. (24)

For the trajectory with relative velocity β12 of the ends the Re ∆W1,0 are
given by the formulae

Re ∆W1 =
e2

8π
(

θ

th θ
− 1), Re ∆W0 =

e2

8π
(1 − θ

sh θ
). (25)

When β12 → 1 the trajectory becomes actually hyperbolic one with charge’s
velocity β(τ) = −th w0τ at proper time τ , and θ = w0(τ2 − τ1) → ∞. Then

Re ∆W1 =
e2w0

8π
(τ2 − τ1), Re∆W0 =

e2

8π
, (26)
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while the mass shifts of uniformly accelerated charges are

∆m = −∂∆W

∂τ2
=

e2w0

8π2
S(λ), Re ∆m1 = −e2w0

8π
,

Re∆m0 = 0. (27)

Due to the symmetry the quantities ∆W B,F , ∆mB,F for the mirror inter-
acting with massless bose- or fermi-field can be obtained from ∆W1,0, ∆m1,0

by the change e2 → ~c.

4 Arguments in favour of the value α0 = 1/4π

for the bare fine structure constant

The symmetry predicts one and the same value e0 =
√

~c for electric and
scalar charges in 3+1-space. Since the radiative corrections are not taken
into account by the theory, this value for electric and scalar charges and
the corresponding value α0 = 1/4π for the fine structure constant should be
considered as the bare, nonrenormalized values.

As the like electric charges are repulsed and the scalar ones are attracted,
the vacuum polarization leads to the screening of electric charge and to the
antiscreening of scalar charge. This is confirmed by the effective, renormal-
ized value α = 1/137.036 of the fine structure constant in QED, which is
essentually less than α0 = 1/4π. The situation discussed corresponds to the
variant (b), considered by Gell-Mann and Low [13], according to which if the
value α0 is finite, then

1) it does not depend on effective value of fine structure constant α,
2) the α must be less than α0, and
3) the charge density at very small distances reduces to the delta-function

e0δ(x).
This means that α is determined by a such vacuum polarization mecha-

nism with such mass spectrum of charged particles that the screening of a
point bare charge begins at finite, though very small, distances from it and
ends at the distances of the order of Compton length of electron, the charge
with the smallest mass.

If now one uses the well-known connection [14,15] between the bare and
renormalized charges in QED,

α−1 = α−1
0 +

N

3π
ln

Λ2

m2
= 137.036, (28)
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then it is possible to evaluate the approximate number N of different charged
particles screening the bare charge and having masses in interval (m, Λ),
where Λ is the upper limit of particle energy up to which QED is correct.

Thus, for Λ = 1/
√

G = 1.22 · 1019 GeV defined by gravitational constant
one has NG = 11.4, and for ΛGU ≈ 1015 GeV of grand unification theory one
has NGU = 13.9. It is well known now that the N is greater than 8,

N = nl + 3(2/3)2 nu + 3(1/3)2 nd + . . . = 8 + . . . ,

where nl, nu, nd are the numbers of charged leptons, quarks with charge
(2/3)e, quarks with charge −(1/3)e, and . . . must include the contributions
of the loops with W± particles etc.

An additional argument in favour of the assertion that the symmetry for
the processes in 3+1-space appears in all its completeness at large energies
and momentum transfers of incident particles is the space one-dimensionality
of these processes.

So, for the collision of electron with electron or positron the elastic scat-
tering cross-section depends on two invariants s and t, which in the center
of mass system equal to

s = −4E2, t = 2p2(1 − cos θ),

where E =
√

p2 + m2, p and θ are the energy, momentum and scattering
angle of electron in c.m.s. At fixed energy E the smallest distance between
the charges is attained at the largest momentum transfer, i.e. at θ = π, when
charges move along the same straight line. Namely in this case each of them
most deeply penetrates under the screening coat of other.

About 45 years ago E.P. Wigner remarked that the special relativity is
the physics of Lorentz transformation, and the quantum mechanics is the
physics of Fourier transformation. Processes induced by a point mirror in
1+1-space are described by the symplest relativistic quantum theory, which
is incarnated in Bogoliubov coefficients. They are Lorentz-invariant scalar
products reduced to Fourier transforms of massless scalar and spinor wave
equation solutions. They can be considered as concentrate of genetic infor-
mation about processes in 3+1- space.

5 Self-action changes ∆W1,0 and traces tr αB,F

The basis for the symmetry between the processes induced by the mirror
in two-dimensional and by the charge in four-dimensional space-time is the
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relation (10), (11) between the Bogoliubov’s coefficients βB,F
ω′ω and the current

density jα(k) or charge density ρ(k) depending on the timelike momentum
kα. The squares of these quantities represent the spectra of real pairs and
particles radiated by accelerated mirror and charge.

The symmetry is extended to the selfactions of the mirror and the charge
and to the corresponding vacuum-vacuum amplitudes, cf. (17) and (18).
In essence, it is embodied in the integral relation (15) between propagators
of a massive pair in two-dimensional space and of a single particle in four-
dimensional space.

The formula (17) for W B,F was obtained provided that the mean number
N̄B,F of pairs created is small and the interference of two or more pairs is
negligible. In the general case the W B,F is given by the formula (12), which
can be written also in the form

2 ImW B,F = ±tr ln(α+α)B,F , (29)

since α+α ∓ β+β = 1, see [7], [4]. As is seen from (12), the imaginery part
of the action differs from zero and then is positive only if β 6= 0, i.e. if the
radiation of real particles is happened indeed.

Formula (29) allows to choose for W B,F the expression

W B,F = ±i tr ln αB,F , (30)

that was called natural by DeWitt [7]. However, this expression is by no
means unique, the expressions with αeiγ or α+ have the same imaginery part.
Nevertheless, the formula (30) is interesting as the definition both the real
and imaginery parts of the selfactions W B,F by means of the Bogoliubov’s
coefficients αB,F

ω′ω only, which, according to the formulae (10), (11), reduce
to the current density jα(q) or to the charge density ρ(q) dependent on the
spacelike momentum qα. This means that the field of the corresponding
perturbations propagates in vacuum together with the mirror, comoves it,
and, at the same time, it containes the information about the radiation of
the real quanta.

Unfortunately, the author failed to find a simple integral representation
for the matrix ln α. Nevertheless, if one again assumes that the mean number
of emitted particles is small, then one may consider α, or iα, or ±iαB,F close
to 1. Namely the last phase factor is most acceptable as will be seen below.
Then, expanding the ln (±iαB,F ) near ±iαB,F = 1 and confine ourselves by
the first term we obtain

W B,F = ±i tr ln (±iαB,F ) ≈ ±itr (±iαB,F − 1) = −tr αB,F + . . . . (31)
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These qualitative arguments allow to state that the functionals tr αB,F are
similar to the corresponding selfactions with opposite sign and therefore must
have the negative imaginery parts. This is confirmed by the general examples
considered below in which at least the initial or the final velocity of the mirror
is subluminal.

The Lorentz-invariant tr α was defined [16] by the formula

trα =

∫

∞
∫

0

dωdω′

(2π)2
αω′ω 2π δ

(

√

κ′

κ
ω −

√

κ

κ′
ω′

)

,

Ω =

√

κ′

κ
ω, Ω′ =

√

κ

κ′
ω′, (32)

in which the Lorentz-invariant argument of δ-function is the difference of the
frequences Ω and Ω′ of reflected and incident waves in the proper system of
the mirror at zero point u = v = 0 where the mirror has velocity β0 and
acceleration a0 = −b

√
κκ′. The multipliers

√

κ′/κ,
√

κ/κ′ are the Doppler
factors connecting the frequences in the laboratory system and zero point
proper system. In proper system of the mirror Ω = Ω′ =

√
ω ω′.

For the trajectories in the Minkowsky plane on the left from their tangent
line Xα(τ ′) at zero point the coordinate z1 = X1(τ ′) − x1(τ) > 0. For these
trajectories the tr α can be transformed to the form

trαB,F = ±i

∫∫

dτdτ ′

{

ẋα(τ)Ẋα(τ ′)
1

}

∆LR
4 (z, ν),

zα = Xα(τ ′) − xα(τ), (33)

where the singular function ∆LR
4 (z, ν) differs from the causal function ∆f

4(z, µ)
by complex conjugation and the replacement µ → iν (or by the replacement
z2 → −z2, µ → ν) [16]:

∆LR
4 (z, ν) =

1

4π
δ(z2) − ν

8π
√

z2
θ(z2)H

(2)
1 (ν

√
z2)

+ i
ν

4π2
√
−z2

θ(−z2)K1(ν
√
−z2). (34)

The expression obtained allows to interpret tr αB,F as a functional de-
scribing the interaction of two vector or scalar sources by means of exchange
by vector or scalar quanta with spacelike momenta. At the same time one
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of the sources moves along the mirror’s trajectory while another one moves
along the tangent line to it at zero point. The last source can be consid-
ered as a probe or detector of exitation created by the accelerated mirror in
vacuum.

As the detector moves with constant velocity β0, its 2-velocity Ẋα(τ ′)
does not depend on τ ′. Consequently, ẋα(τ)Ẋα(τ ′) = −γ∗(τ) is the rela-
tive Lorentz-factor defined by the relative velocity β∗(τ) of the mirror and
detector:

γ∗(τ) =
1 − β(τ) β0

√

1 − β2(τ)
√

1 − β2
0

=
1

√

1 − β2
∗(τ)

,

β∗(τ) =
β(τ) − β0

1 − β(τ) β0
, (35)

and is the Lorentz-invariant quantity for each τ . Then

tr αB,F = −i

∫

dτ

{

γ∗(τ)
1

}

J(τ, ν), (36)

J(τ, ν) =

∫

dτ ′ ∆LR
4 (z(τ, τ ′), ν). (37)

It is seen from this representation that at θ 6= ∞, when Lorentz- factor γ∗(τ)
is confined on the whole trajectory, the both traces have the same qualitative
behaviour when parameter ν → 0. It is clear that their infrared (logarithmic)
singularities in this parameter are indebted to the behaviour of the integral
J(τ, ν) at τ → ±∞. For the trajectories with subluminal relative velocities
β10, β20 of the ends both trαB,F have infrared singularities at ν = 0. Bedides,
the singularities of trαB differ from those of tr αF only by the values of the
relative Lorentz-factor γ∗(τ) for initial and final ends of the trajectoty, i.e.
by the factors 1/

√

1 − β2
10 and 1/

√

1 − β2
20. Since the infrared singularities

from the initial and final ends appear in tr αF with the factors
√

1 − β2
10

2β10

,

√

1 − β2
20

2|β20|
, (38)

they disappear in tr αF for the trajectories with luminal velocities of the ends,
β10 = 1, β20 = −1, but remain in trαB. The disappearance of singularities in
trαF for the such trajectories means that the function J(τ, ν) is integrable
in τ at τ → ±∞ even if ν = 0. At the same time the function γ∗(τ) J(τ, ν)
is integrable in this region only at ν 6= 0.
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The weakening of interaction of scalar charges with increasing their rel-
ative velocity, contrary to the constancy of interaction of electric charges,
is connected with different geometrical structure of scalar and vector field
sources ρ(x) and jα(x). They are given by (4) for pointlike charges moving
along the trajectory xα(τ).

The charges of the scalar and vector field sources are defined by the space
integrals of their charge densities ρ(x, t) and j0(x, t):

Q0, Q1 =

∫

d3x {ρ(x, t), j0(x, t)} = e

∫

dτ{1, ẋ0(τ)} δ(t − x0(τ))

= e{γ−1(t), 1}, (39)

since dτ/dt′ = γ−1(t′) if t′ = x0(τ). As is obvious, the charge for the source
T αβ(x) of a tensor field with spin 2 increases as the particle’s energy, Q2 =
eγ(t).

The removal of ultraviolet divergences in the selfactions W1,0|F of accel-
erated charges (force F 6= 0) consists in the subtraction of corresponding
selfactions W1,0|F=0 of uniformly moving charges as a result of which the
changes ∆W1,0 = W1,0|F0 of selfactions owing to acceleration do not contain
ultraviolet singularities, have the positive imaginery part, Im ∆W1,0 > 0, and
vanish together with acceleration.

The following representations for the selfactions of uniformly moving elec-
tric and scalar charges are very instructive

W1,0|F=0 =
1

2
e2

∫∫

dτ dτ ′{ẋα(τ)ẋα(τ ′), 1}∆f
4(z, µ)|F=0

= ∓ e2

4π
· 1 − i

2
√

2ε
· τ. (40)

They arise if one introduces the integration variable x = τ ′ − τ instead of τ ′,
so that z2 = −x2, puts µ = 0, and makes use of representation

∆f
4(z, µ)|µ=0 = − 1

4π2
· i

x2 − iε
=

1

4π2
(

ε

x4 + ε2
− i

x2

x4 + ε2
).

The opposite signs of the selfactions are due to repulsion of like electric
charges and to attraction of scalar ones. The coefficients before τ are the
classical proper energies −δm1,0 of the charges taken with minus sign, and√

2ε characterizes the charge dimension. Different signs of Im W1,0|F=0 lead,
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according to amplitudes exp(iW1,0|F=0), to disappearance (screaning) of elec-
tric charge and to unlimited growing (antiscreaning) of scalar charge.

As is seen from regularized representation

tr αB,F |reg =
1

2π

∫ ∞

0

ds[

∫ ∞

−∞

dx {1,
√

G′(x)} e−is(G(x)−x) −
√

π

ibs
],

s =
ω

κ
, (41)

obtained in [16], the ultraviolet divergences in trαB,F are removed by sub-
traction from the integrand of the first term its asymptotical expansion in
s, as s → ∞. The invariant variable s = ω/κ =

√

ωω′/κκ′ = bρ/2w0 is
proportional to momentum transfer ρ in units of proper acceleration w0 of
the mirror at the point of its tangency with detector. The subtracted term,
being integrated over ρ up to large but finite ρmax,

1

2π

∫ smax

0

ds

√

π

ibs
=

1

2π

√

πρmax

w0

(1 − i), (42)

is one and the same for Bose and Fermi cases and explicitly depends on
acceleration.

When the space interval ∆x between the mirror and detector becomes
less than ~/2∆p, the uncontrolled momentum transfer between them becomes
greater than ∆p and leads to ultraviolet divergency in nonregularized trαB,F .
As the mirror coordinate near the point of tangency with detector changes in
time according to the law x(t) = −w0 t2/2, the time interval τ necessary for
the momentum transfer ∆p is of the order of τ ∼ 2

√

~/∆p w0 = 2/
√

w0ρmax

if one sets ∆p = ~ρmax. Then the subtracted term which regularizes the
trαB,F acquires the form

1

2π

√

πρmax

w0
(1 − i) =

1

4π

√
πρmax (1 − i) · τ, τ ∼ 2/

√
w0ρmax. (43)

As distinct from (39), this term has one and the same sign for Bose and
Fermi cases. This can be understood as a consequence of positive momentum
transfer from detector to mirror in both cases. The differences in meanings
of ρmax ∼ 1/

√
2ε and τ are more understandable.

Unlike ∆W1,0, describing the change of selfaction of a charges due to accel-
eration, the functionals trαB,F describe the interaction of accelerated mirror
with the probe executing uniform motion along the tangent to the mirror’s
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trajectory at the point where mirror has acceleration w0. This interaction is
transmitted by the vector or scalar perturbations created by the mirror in
the vacuum of Bose- or Fermi-field and carring the spacelike momentum of
the order of w0. According to (34), at distances of the order of w−1

0 from
the mirror, the field of these perturbations decreases exponentially in time-
like directions and oscillates with damped amplitude in spacelike directions.
It can be said that such a field moves together with the mirror and is its
”proper field”. Hence, the probe interacts with the mirror for a time of the
order of w−1

0 while the charge all the time interacts with itself and feels the
change of interaction over the all time of acceleration. Therefore, it is not
surprising that the −tr αB,F coincide in essence with ∆W1,0 if in these latter
one puts τ2 − τ1 = 2π/w0, e2 = 1. In other words, the trαB,F are the mass
shifts of the mirror’s proper field multiplied by characteristic proper time of
their formation.

The trα for the trajectory with subluminal velocities of the ends is an
invariant function of the relative velocities β12, β10, β20 connected by the
relation β12 = (β10 − β20)/(1 − β10β20). Let us consider the regularized
trαB,F for two important trajectories.

1. Quasihyperbolic trajectory, given by the formula (19), is time-reversed
to itself.

αB
ω′ω = 2ia sh θ

√

ωω′

Q
K1(a

√

Q), −πa sh θ

√

ωω′

−Q
H

(2)
1 (a

√

−Q), (44)

for Q = ω2+ω′2−2 ωω′ ch θ ≷ 0. Here a = β10

√

1 − β2
10/w0, β10 = th θ/2; as

usual, θ = Arth β12 is the Lorentz-invariant parameter defined by the relative
velocity of the ends.

αF
ω′ω = a e

i ω+ω′

w0
β2
1

∫ ∞

−∞

dt

√

sh2t + ch2
θ

2
×

× exp[ia((ω′ − ω)ch
θ

2
sht − (ω′ + ω)sh

θ

2
cht)]. (45)

trαB =
cth θ/2

2π
[−π

2
− i(ln

2

γε
− 1)], ε = ν/w0, (46)
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trαF =
1

2π
{ 1

sh θ/2
[−π

2
− i(ln

2

γε
− 1)]

+ i[th
θ

2
B(k) +

ln ch θ/2

sh θ/2
]}, (47)

B(k) =

∫ π/2

0

cos2 ϕ dϕ
√

1 − k2 sin2 ϕ
, k = th

θ

2
.

Here B(k) is one of the elliptic integrals [10].
2. The Airy’s semiparabola with in-tangent line to inflection point is

given by

κumir(v) = (1 − b2/c) κ
′v − b3/3c2, −∞ < v 6 v0,

= κ
′v + b κ

′2v2 + (1/3) c κ
′3v3, v0 6 v < ∞,

where the inflection point v0 = −b/κ
′c, b > 0, and c > b2 due to the

timelikeness of the trajectory.

αB
ω′ω =

√

x′/x

κκ′
(cx)−1/3ei(b/c)(x−x′)−i(2/3)w3/2 ×

× [π Ai(z) − i(π Gi(z) − 1

z
)], (48)

αF
ω′ω =

(cx)−1/3

√

κκ′(α + 1)
ei(b/c)(x−x′)−i(2/3)w3/2×

× [
i
√

α

z
+

1√
w

∫ ∞

0

dt
√

t2 + αw e−izt−it3/3]. (49)

Here Ai(z) and Gi(z) are well known Airy and Scorer functions defined as in
[17], and

z = (cx)−1/3(x − x′) − w, w = (b/c)2(cx)2/3,

x = ω/κ, x′ = ω′/κ
′, α = c/b2 − 1, (50)

Parameter α = (1− β10)/2β10 is defined by the initial relative velocity β10 of
the mirror and detector, β20 = −1.

tr αB =
1

2π
(α + 1){−π

2
− i[ln

3(α + 1)2

γε
− 1 − 1

3
ln 2]},

ε = ν/w0, (51)
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trαF =
1

2π
{
√

α(α + 1)(−π

2
− i ln

3(α + 1)2

γε
) + i

√
α + 1 J(α)}, (52)

J(α) = 1 +
√

α +
α − 2

3
√

α + 1
ln

α +
√

α(α + 1)

1 +
√

α + 1

+

√
4 + α

3
ln

√

α(4 + α) − α

4 + 2
√

4 + α
.

Note, that αB,F
ω′ω depend on two dimensionless parameters b, c, but the traces

trαB,F depend only on their combination α, i.e. only on the subluminal
relative velocity β10.

Airy semiparabola with out-tangent line is time-reversed to the considered
trajectory and can be obtained from it by the changes v � −u, κ � κ

′.
This leads to the change x � x′ in the expressions for αB,F

ω′ω . The trαB,F do
not change at all, but it must be understood that the parameter α is now
defined by the final (and negative) relative velocity β20 of the mirror and
detector: α = −(1 + β20)/2β20 > 0, while β10 = 1.

The infrared logarithmic singularities of tr αB,F were regularized by nonzero
momentum transfer ν � w0. Their coefficients are in accordance with gen-
eral consideration of Section 5. These singularities disappear from trαF at
luminal velocities of the ends, and tr αF becomes pure imaginery positive.

We do not consider here the coefficients βB,F∗

ω′ω . They can be obtained from

αB,F
ω′ω by the changes ω → −ω,

√
ω → −i

√
ω, and division on i in Bose-case,

see (2).
The symmetry between processes induced by the mirror in two-dimensional

and by the charge in four-dimensional space-times predicts not only the value
e2
0 = 1 for the bare charge squared that corresponds to the bare fine structure

constant α0 = 1/4π. It predicts also the appearance of scalar particles in
ultra high-energy collisions in 3+1-space and the decreasing their interaction
with scalar source with increasing of the energy.

It is very interesting that the bare fine structure constant has the purely
geometrical origin, and, also, that its value is small: α0 = 1/4π � 1. The
smallness of α0 has the essential meaning for the quantum elecrodynamics
where it explanes the smallness of α and justifies a priori the applicability of
the perturbation theory.

The work was carried out with financial support of Scientific Schools
and Russian Fund for Fundamental Research (Grants 1578.2003.2 and 02-
02-16944).
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