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Abstract

The metric space-time is revised as a priori existing. It is substituted

by the world continuum endowed only with the affine connection. The

metric, accompanied by the tensor Goldstone boson, is to emerge dur-

ing the spontaneous breaking of the global affine symmetry. Implica-

tions for gravity and the Universe are indicated.

1 Introduction

According to the present-day paradigm, the physical sciences start with the
space-time possessing metric as the primordial structure. I propose to go
beyond this paradigm and substitute the metric space-time, at the underlying
level, by the world continuum which possesses only the affine connection.
The metric is to appear at the effective level during the world structure
formation. In other words, the space time is to change its status from a priori
existing to emerging. Ultimately, this approach results in the nonlinear model
GL(4, R)/SO(1, 3) for the gravity, with the graviton as the tensor Goldstone
boson corresponding to the spontaneously broken global affine symmetry (in
detail, see ref. [1]). This is the further development of the Goldstone approach
to gravity [2, 3].

2 Affine symmetry

Affine connection Assume that the forebear of the space-time is the world
continuum equipped only with the affine connection. Let xµ, µ = 0, . . . , 3 be
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the world coordinates. There being, prior to metric, no partition of the con-
tinuum onto the space and time, the index 0 has yet no particular meaning.
In ignorance of the underlying “dynamics”, consider all the structures related
to the continuum as the background ones. Let ψ̄λ

µν(x) be the background
affine connection and let ξ̄α be the coordinates where the connection have a
particular, to be defined, form ψ̄γ

αβ(ξ̄).1 For reason not to be discussed, let
the antisymmetric part of the background connection (the torsion) be ab-
sent identically. As for the symmetric part, one is free to choose the special
coordinates to make the physics description as clear as possible.

So, let P be a fixed but otherwise arbitrary point with the world coor-
dinates Xµ. One can nullify the symmetric part of the connection in this
point by adjusting the proper coordinates ξ̄α(x,X). In the vicinity of P , the
connection becomes:

ψ̄γ
αβ(ξ̄) =

1

2
ρ̄γ

αδβ(Ξ̄) (ξ̄ − Ξ̄)δ + O((ξ̄ − Ξ̄)2), (1)

with ρ̄γ
αδβ(Ξ̄) being the background curvature tensor in the point P and Ξ̄ ≡

ξ̄α(X,X). Let us consider the whole set of the coordinates with the property
ψ̄α

βγ |P = 0. The allowed group of transformations of such coordinates is the
inhomogeneous general linear group IGL(4, R) = T4 × GL(4, R) (the affine
one):

(A, a) : ξ̄α → ξ̄′α = Aα
β ξ̄

β + aα, (2)

with A being an arbitrary nondegenerate matrix. Under these, and only
under these transformations, the affine connection in the point P remains to
be zero. The group is the global one in the sense that it transforms the local,
i.e., the point P related coordinates in the global manner, i.e., for all the
continuum at once. The respective coordinates will be called the local affine
ones.2 In these coordinates, the continuum in a neighbourhood of the point
is approximated by the affinely flat manifold. In particular, the underlying
covariant derivative in the affine coordinates in the point P coincides with
the partial derivative.

Beyond the special relativity According to the special relativity, the
present-day physical laws are invariant relative to the choice of the inertial

1The bar sign refers to the background. The indices α, β, etc, refer to the special

coordinates, while λ, µ, etc, to the world ones.
2The term “local” will be omited for short.
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coordinates, with the space-time symmetry being the Poincare one. Postu-
late the principle of the extended relativity, stating the invariance relative to
the choice of the affine coordinates. The physics invariance symmetry ex-
tends now to the affine group. The latter is 20-parametric and supplements
the 10-parameter Poincare group ISO(1, 3) with the ten special affine trans-
formations. There being known no exact affine symmetry, the latter should
be broken to the Poincare symmetry in transition from the underlying level
to the effective one.

Metric and symmetry breaking Assume that the affine symmetry break-
ing is achieved due to the spontaneous emergence of the background met-
ric ϕ̄µν(x) in the world continuum. The metric is assumed to have the
Minkowskian signature and to look in the affine coordinates as:

ϕ̄αβ(ξ̄) = η̄αβ − 1

2
ρ̄γαδβ(Ξ̄) (ξ̄ − Ξ̄)γ(ξ̄ − Ξ̄)δ + O((ξ̄ − Ξ̄)3). (3)

Here one puts η̄αβ ≡ ϕ̄αβ(Ξ̄) and ρ̄γαδβ(Ξ̄) = η̄γδ ρ̄
δ
αδβ(Ξ̄). The metric (3)

is such that the Christoffel connection χ̄γ
αβ(ϕ), determined by the metric,

matches with the affine connection ψ̄γ
αβ in the sense that the connections

coincide locally, up to the first derivative: χ̄γ
αβ = ψ̄γ

αβ + O((ξ̄ − Ξ̄)2). This
is reminiscent of the well-known fact that the metric in the Riemannian
manifold may be approximated locally, up to the first derivative, by the
Euclidean metric. In the wake of the background metric, there appears the
(yet preliminary) partition of the world continuum onto the space and time.

Under the affine symmetry, the background metric ceases to be invari-
ant. But it still possesses an invariance subgroup. Viz., without any loss of
generality, one can choose among the affine coordinates the particular ones
with η̄αβ being in the Minkowskian form η = diag (1,−1,−1,−1). The re-
spective coordinates will be called the background inertial ones. They are
to be distinguished from the effective inertial ones (see later on). Under the
affine transformations, one has

(A, a) : η → η′ = A−1TηA−1 6= η, (4)

whereas the Lorentz transformations A = Λ still leave η invariant. It fol-
lows that the subgroup of invariance of η is the Poincare group ISO(1, 3) ∈
IGL(4, R), the translation subgroup being intact. Thus under the appear-
ance of the metric, theGL(4, R) group is broken spontaneously to the residual
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Lorentz one
GL(4, R)

MA−→ SO(1, 3). (5)

For the symmetry breaking scale MA, one expects a priori MA ∼ MP l, with
MP l being the Planck mass. The relation between the scales will be discussed
later on.

3 Gravity

Affine Goldstone boson Let ξ̄α be the background inertial coordinates
adjusted to the point P . Attach to this point the auxiliary linear space T , the
tangent space in the point. By definition, T is isomorphous to the Minkowski
space-time. The tangent space is the structure space of the theory, where-
upon the realizations/representations of the physics space-time symmetries,
the affine and the Poincare ones, are defined. Introduce in T the coordinates
ξα, the counterpart of the background inertial coordinates ξ̄α in the space-
time. By construction, the connection in the tangent space is zero identically.
For the connection in the space-time in the the point P to be zero, too, the
coordinates are to be related as ξα = ξ̄α + O((ξ̄ − Ξ̄)3).

Due to the spontaneous breaking, GL(4, R) should be realized in the non-
linear manner [4], with the nonlinearity scale MA, the Lorentz symmetry be-
ing still realized linearly. The spinor representations of the latter correspond
to the matter fields, as usually. In this, the finite dimensional spinors appear
only at the level of SO(1, 3). The broken part GL(4, R)/SO(1, 3) should
be realized in the Nambu-Goldstone mode. Accompanying the spontaneous
emergence of the metric, there should appear the 10-component Goldstone
boson which corresponds to the ten generators of the broken affine transfor-
mations.

According to ref. [4], the nonlinear realization of the symmetry G spon-
taneously broken to the symmetry H ⊂ G can be built on the quotient space
K = G/H, the residual subgroup H serving as the classification group.
One is interested in the pattern GL(4, R)/SO(1, 3), with the quotient space
consisting of all the broken affine transformations. Let κ(ξ) ∈ K be the
coset-function on the tangent space. To restrict κ by the quotient space, one
should impose on the representative group element some auxiliary condition,
eliminating explicitly the extra degrees of freedom. Under the arbitrary affine
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transformation ξ → ξ ′ = Aξ + a, the coset is to transform as

(A, a) : κ(ξ) → κ′(ξ′) = Aκ(ξ)Λ−1, (6)

where Λ(κ,A) is the appropriate element of the residual group, here the
Lorentz one. This makes the transformed group element compatible with
the auxiliary condition. In the same time, by the very construction, the
Minkowskian η stays invariant under the nonlinear realization:

(A, a) : η → η′ = Λ−1TηΛ−1 = η (7)

(in distinction with the linear representation eq. (4)).
Otherwise, one can abandon any auxiliary condition extending the affine

symmetry by the hidden local symmetry Ĥ ' H. In the tangent space, one
should distinguish now two types of indices: the Lorentz ones, acted on by
the local Lorentz transformations Λ(ξ), and the affine ones, acted on by the
global affine transformations A. Designate the Lorentz indices as a, b, etc,
while the affine ones as before α, β, etc. The Lorentz indices are manipulated
by means of the Minkowskian ηab (respectively, ηab). The Goldstone field
is represented by the arbitrary 4 × 4 matrix κ̂α

a (respectively, κ̂−1a
α) which

transforms similar to eq. (6) but with arbitrary Λ(ξ).3 The extra Goldstone
degrees of freedom are unphysical due to the gauge transformations Λ(ξ).
This is the linearization of the nonlinear model, with the proper gauge boson
vabγ being expressed, due to the equation on motion, through κ̂a

α and its
derivatives. With this in mind, the abrupt expressions entirely in terms of
κ̂a

α and its derivatives are used in what follows. The versions differ by the
higher order corrections.

Matter and radiation For the matter fields φ one puts

φ(ξ) → φ′(ξ′) = ρ̂φ(Λ)φ(ξ), (8)

with ρ̂φ taken in the proper Lorentz representations. As for the gauge bosons,
they constitutes one more separate kind of fields, the radiation. By definition,
the gauge fields Vα transform under A linearly as the derivative ∂α ≡ ∂/∂ξα.
The modified fields V̂a ≡ κ̂α

aVα transform as the Lorentz vectors

V̂ (ξ) → V̂ ′(ξ′) = Λ−1T V̂ (ξ) (9)

and are to be used in the model building.

3The hat sign refers to the hidden local Lorentz symmetry.
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Nonlinear model To explicitly account for the residual symmetry it is
convenient to start with the objects transforming only under the latter sym-
metry. Clearly, any nontrivial combinations of κ̂ and κ̂−1 alone transform
explicitly under A. Thus the derivative terms are inevitable. To describe the
latter ones, introduce the Cartan one-form chosen as follows:

ω̂ = ηκ̂−1dκ̂. (10)

The one-form transforms as the Lorentz quantity:

ω̂(ξ) → ω̂′(ξ′) = Λ−1T ω̂(ξ)Λ−1 + Λ−1TηdΛ−1. (11)

In the component notation, the one-form looks like ω̂ab. Decompose it
into the symmetric and antisymmetric parts ω̂±

ab, respectively:

ω̂ab ≡
∑

±

ω̂±

ab =
∑

±

[ηκ̂−1dκ̂]±ab. (12)

One can see that ω̂±

ab transform independently as

ω̂±(ξ) → ω̂′±(ξ′) = Λ−1T ω̂±(ξ)Λ−1 + δ±, (13)

where

δ− = Λ−1TηdΛ−1,

δ+ = 0. (14)

For the derivative of the one-form one gets:

ω̂±

abc = κ̂γ
c ω̂

±

ab/∂ξ
γ = [ηκ̂−1∂̂c κ̂]±ab, (15)

where ∂̂c ≡ κ̂γ
c∂γ = κ̂γ

c∂/∂ξ
γ is the effective partial derivative. Transform-

ing inhomogeneously, ω̂−

abc could be used as the minimal connection for the
nonlinear realization.

The transformation properties of the nonlinear covariant derivative are
not changed if one adds to the above minimal connection the properly modi-
fied terms ω̂+

abc, the latter ones transforming homogeneously. For consistency
reason (see later on), choose for the nonminimal connection the following
special combination:

ω̂abc = ω̂−

abc + ω̂+

cab − ω̂+

cba. (16)
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By means of this connection, one can define the nonlinear derivatives of the
matter fields D̂aφ, the gauge strength F̂ab, as well as the field strength for
affine Goldstone boson R̂abcd and its contraction R̂ ≡ ηabηcdR̂abcd.

The above objects can serve as the building blocks for the nonlinear model
GL(4, R)/SO(1, 3) in the tangent space. Postulate the equivalence principle

in the sense that the tangent space Lagrangian should not depend explicitly
on the background parameter-functions ρ̄d

abc (cf. eq. (1)). Thus, the La-
grangian may be written as the general Lorentz (and, thus, affine) invariant
built of R̂, F̂ab, D̂aφ and φ. As usually, one restricts himself by the terms
containing two derivatives at the most.

Once such a Lagrangian is built, one can rewrite it by means of κ̂α
a and

κ̂−1a
α in terms of the affine quantities. This makes explicit the geometri-

cal structure of the theory and relates the latter with the gravity. Under
the above choice for the nonlinear connection, the Lagrangian for the affine
Goldstone boson, radiation and matter becomes

L = cgM
2

AR(γαβ) + Lr(Fαβ) + Lm(Dαφ, φ). (17)

Here
γαβ = κ̂−1a

αηabκ̂
−1b

β (18)

transforms as the affine tensor

(A, a) : γαβ → γ′αβ = A−1γ
αγγδA

−1δ
β. (19)

It proves that R(γαβ) = R̂(ω̂abc) can be expressed as the contraction R =

Rαβ
αβ of the tensor Rγ

αδβ ≡ ηγγ′

κ̂−1a
ακ̂

−1b
βκ̂

−1d
δ κ̂

−1c
γ′R̂cadb, the latter in turn

being related with γαβ as the Riemann-Christoffel curvature tensor with the
metric. In this, all the contractions of the affine indices are understood with
γαβ (respectively, γαβ). Similarly, Dαφ ≡ κ̂−1a

αD̂aφ look like the covariant
derivatives of the matter fields with the spin-connection ωabγ ≡ ω̂abc κ̂

−1c
γ .

The gauge strength Fαβ has the usual form containing the partial derivative
∂α.

Clearly, the Lagrangian L looks like the generally covariant one in the
tangent space considered as the Riemannian manifold with the effective4 met-
ric γαβ, the Riemann-Christoffel curvature Rγ

αδβ , the Ricci curvature Rαβ,
the Ricci scalar R, the spin-connection ωabγ and the tetrad κ̂−1a

α (the inverse

4The term “effective” will be omitted for short, while that “background” will, in con-

trast, be retained.
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one κ̂α
a ). This is in no way accidental. Namely, as it is shown in ref. [3],

under the special choice of the nonlinear connection eq. (16), the Lagrangian
becomes conformally invariant, too. Further, according to ref. [5], the theory
which is invariant both under the conformal symmetry and the global affine
one is generally covariant. After the choice of the metric, this imposes the
Riemannian structure onto the tangent space. Precisely the last property
justifies the above special choice for the nonlinear connection. The affine
Goldstone boson proves to be the graviton in disguise.

General Relativity and beyond The preceding construction referred to
the tangent space T in the given point P . Accept the so defined Lagrangian
as that for the space-time, being valid in the background inertial coordi-
nates in the infinitesimal neighbourhood of the point. After multiplying
the Lagrangian by the generally covariant volume element (−γ)1/2 d4Ξ̄ , with
γ ≡ detγαβ, one gets the infinitesimal contribution into the action in the
given coordinates.

The relation between the background inertial and world coordinates is
achieved by means of the background tetrad ēα

µ(X). Now, introduce the
effective tetrad related with the background one as

ea
µ(X) = κ̂−1a

α(X) ēα
µ(X). (20)

The effective tetrad transforms as the Lorentz vector:

eµ(X) → e′µ(X) = Λ(X) eµ(X). (21)

Due to the local Lorentz transformations Λ(X), one can eliminate six com-
ponents out of ea

µ, the latter having thus ten physical components. In this
terms, the effective metric in the world coordinates is

gµν ≡ ēα
µγαβ ē

β
ν = ea

µηabe
b
ν . (22)

In other words, the tetrad ea
µ defines the effective inertial coordinates. Phys-

ically, eq. (20) describes the disorientation of the effective inertial and back-
ground inertial frames depending on the distribution of the affine Goldstone
boson.

By means of ea
µ, the tangent space quantities result in the world coordi-

nates in the usual expressions of the Riemannian geometry containing metric
gµν and spin-connection ωabµ. One gets for the total action:

I =
∫

(

1

2
M2

P lR(gµν) + Lr(Fµν) + Lm(Dµφ, φ)
)

(−g)1/2 d4X, (23)
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with g ≡ det gµν. Note that due to the weight factor
√−g, the affine Gold-

stone boson enters the action also with the derivativeless couplings. Finally,
one arrives at the General Relativity (GR) equation of motion for gravity:

Rµν −
1

2
Rgµν = M−2

P l Tµν . (24)

Here Tµν is the energy-momentum tensor of the radiation and matter.
In the above, the constants are such that cgM

2
A = 1/2M2

P l ≡ 1/(16πGN),
with GN being the Newton’s constant. Superficially, the (effective) Rie-
mannian geometry is valid at all the space-time intervals. Nevertheless, its
accuracy worsen at the smaller and smaller intervals, requiring more and
more terms in the decomposition over the ratio of the energy to the sym-
metry breaking scale MA, as it should be for the effective theory. Thus, the
scale MA (or rather, the Planck mass MP l) is the inverse minimal length in
the nature.

In the GR, after fixing the Lagrangian the theory becomes unique, in-
dependent of the choice of the coordinates. Under extension of the tangent
space Lagrangian beyond the general covariance, the theory in the space-time
ceases to be generally covariant and thus unique. It depends not only on the
Lagrangian but on the choice of the coordinates. Relative to the general
coordinate transformations, the obtained GR extensions divide into the in-
equivalent classes, each of which is characterised by the particular set of the
background parameter-functions. A priori, no one of the sets is preferable.
Which one is suitable (if any), should be determined by observations. Each
class consists of the equivalent extensions related by the residual covariance
group. Among the inequivalent extensions, there appears the natural hier-
archy according to whether the affine symmetry is explicitly violated or not.
For details, see ref. [1].

The Universe and beyond Let the formation of the Universe be the
result of the actual transition between the two phases of the continuum, the
affinely connected and metric ones. This transition is thus the “Grand Bang”,
the origin of the Universe and the very space-time. There is conceivable
the appearance (as well as disappearance and coalescence) of the various
bubbles of the metric phase inside the affinely connected one (and v.v.).
These bubbles are to be associated with the multiple universes. One of the
latter ones happens to be ours. Hopefully, this may shed light on the long-
standing problem of the fine tuning of our Universe.
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4 Conclusion

In conclusion, the new physics paradigm realizes consistently the approach to
gravity as the Goldstone phenomenon. The theory constructed proceeds, in
essence, from two basic symmetries: the spontaneously broken global affine
symmetry and the general covariance. The theory embodies the GR as the
lowest approximation. Its distinction with the GR are twofold. At the ef-
fective level, the theory predicts the natural hierarchy of the GR extensions
depending on the mode of the affine symmetry. At the underlying level, it
presents the new physics comprehension of the gravity and the Universe.
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