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1 Introduction.

In this talk I will discuss some recent progress in AdS/CFT correspondence.
The AdS/CFT correspondence is a strong-weak coupling duality. Four-
dimensional N = 4 supersymmetric Yang-Mills theory with the coupling
constant gY M and ’tHooft coupling λ = g2

Y MN is conjectured to be equiva-
lent to the Type IIB string theory on AdS5 × S5 with the radius R ∼ λ1/4

and string coupling constant gstr = g2
Y M . This means that weakly coupled

Yang-Mills (small λ) is mapped to the string theory on highly curved AdS
space. When AdS space is highly curved, the string worldsheet theory be-
comes strongly coupled.

Therefore, the weakly coupled Yang-Mills maps to the strongly coupled
string worldsheet theory, and vice versa. Nevertheless, some elements of the
YM perturbation theory were recently reproduced from the string theory
side.

The most recent example are operators with the large R-charge corre-
sponding to the spinning strings in AdS5 × S5 [1, 2, 4, 5]. Consider the
operators of the form

tr φφ . . . ∂ . . . ∂φ . . .
︸ ︷︷ ︸

L

(1)

It turns out that in some perturbative calculations the small parameter is
λ
L2 rather than λ. This allows to use the Yang-Mills perturbation theory in
the regime where λ is large, where we can also compute on the string theory
side.
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2 Coherent states.

It is convenient to consider instead of the single-trace operators tr φ · · ·φ
the corresponding state in the theory on R × S3. This is a chain of one-
particle states (”partons”). We will be interested mainly in the one-loop
computations, so we will consider partons as 1-particle states in the free the-
ory. These 1-particle states form a representation of the conformal group
SO(2, 4) ' SU(2, 2) known as the ”singleton representation”. The con-
formal group SU(2, 2) together with the R-symmetry group SU(4) form a
bosonic part of the super-group of super-conformal transformations, called
PSU(2, 2|4). The 1-particle states are in the ”super-singleton” representa-
tion of this group.

2.1 Definition of coherent states.

We will now define a a special class of 1-particle states known as ”coherent
states”. We start with the “basic”state:

ψ1 =
∫

S3

d3~n(Φ1(~n) − iΦ2(~n))|0 > (2)

Here Φ1 and Φ2 are two of the six scalar fields of the N = 4 super-Yang-Mills
theory and |0 > is the conformally invariant vacuum of this theory. Our
state ψ1 can be described as the creation operator of the zero harmonic of
the field Φ1 − iΦ2 on S3, acting on the vacuum.

Let us act on this state ψ1 by the superconformal group PSU(2, 2|4).
Define ψg:

ψg = g.ψ1 (3)

The stabilizer of ψ1 is PSU(2|2)×PSU(2|2)×U(1)2, so the coherent states
are parametrized by the coset space

PSU(2, 2|4)

PSU(2|2) × PSU(2|2) × U(1)2
(4)

This definition of the coherent states is the generalization of the coherent
states in the SU(2) sector introduced in [6].
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2.2 Explicit formulas.

Let us start with acting on ψ1 by the subgroup SO(6) ⊂ PSU(2, 2|4). We
get:

∫

S3

d3~n(Z1Φ1 + . . .+ Z6Φ6)|0 > (5)

where Zi ∈ C , Z2
1 + . . . Z2

6 = 0. These states are zero harmonics on S3 of
the creation operator of the complex scalar Z1Φ1 + . . .+Z6Φ6, acting on the
vacuum. Now let us characterize the orbit of ψ1 under SU(2, 2) × SU(4) ⊂
PSU(2, 2|4). Take the field Z1Φ1 + . . .+ Z6Φ6 but instead of zero harmonic
on S3, create the following positive frequency solution:

1

Y−1 cos τ + Y0 sin τ − (~Y · ~n)
(6)

where again Yi are the complex numbers, with the constraint Y 2
−1+Y 2

0 −Y 2
1 −

Y 2
2 −Y

2
3 −Y 2

4 = 0 and τ, ~n are the coordinates on R×S3. The manifold of the
complex lightlike vectors Y in C2+4 consists of two connected components.
Those Y which can be rotated by SO(2, 4) to (1,−i, 0, 0, 0, 0) belong to the
first component, and those which can be rotated to (1, i, 0, 0, 0, 0) belong
to the second component. We need only the first component; the second
component will give negative-frequency solutions. Such states form an orbit
of ψ1 under SU(2, 2) × SU(4) ⊂ PSU(2, 2|4).

The states ψg generate the whole super-singleton representation (although
there are some linear relations among them). Consider chains of coherent
states of partons:

tr ψg1
⊗ ψg2

⊗ · · · ⊗ ψgL
= Ψ[g(n)] (7)

Such states generate the space of L-particle states.

2.3 Continuous limit of the spin chain.

Conjecture. When L → ∞ and λ
L2 is small, the dynamics (renormgroup

evolution) of the operator is described by a classical system with the phase
space — the space of contours g(σ) where σ = n/L. The symplectic form is

Ω = dα, α = (Ψ[g(σ)], dΨ[g(σ)]) (8)

The Hamiltonian is
H = (Ψ[g(σ)], H

Y M
int Ψ[g(σ)]) (9)
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To motivate this proposal, notice that if g(σ) = g = const then ψg ⊗ · · ·⊗ψg

is a ferromagnetic vacuum. The operators Ψg(σ) with continuous g(σ) corre-
spond to the classical long wavelength excitations about this ferromagnetic
vacuum.

A calculation [7] using the one-loop dilatation operator computed in [8, 9]
gives

H1−loop
cl =

∫

dσ||∂σg(σ)||2 (10)

where ||dg||2 is the invariant metric on PSU(2,2|4)
PSU(2|2)×PSU(2|2)×U(1)2

.

3 View from the string theory side.

3.1 Equivalence of two dynamical systems.

The dimension of the coset PSU(2,2|4)
PSU(2|2)×PSU(2|2)×U(1)2

is 16|16 (sixteen even and

sixteen odd coordinates). Therefore the contour g(σ) is specified by 16 even
and 16 odd functions of one real variable.

But the classical string solutions in AdS5 × S5 are also specified by 16
even and 16 odd functions of one real variable. Indeed, fix the global time
T = 0; the classical string is specified by its position (shape) at T = 0
and its velocity. Eight functions are needed to determine the position of
the string at T = 0, and another eight functions to determine the velocity.
Therefore, the phase space is parametrized by 16 functions. In addition,
we need to specify 32 fermions, half of which can be gauged away by the
kappa-symmetry; therefore, we need also 16 odd functions.

This rough counting shows that the continuous spin chain and the string
worldsheet sigma-model have the same number of degrees of freedom. This
allows us to conjecture that the classical worldsheet sigma-model for the Type

IIB superstring on AdS5 × S5 is equivalent as a Hamiltonian system to the

classical parton chain. (More precisely, we need the union of the spin chains
for all the possible values of the length.)

For the classical worldsheet theory to be valid, we need at least λ >> 1.
For the YM perturbation theory to work, we need λ/L2 << 1 (this is a
conjecture). Therefore, we need very large L.

Large number of partons means that the state has large R-charge, or from
the point of view of the string theory the large momentum in S5. Therefore
large L corresponds to the fast moving strings.
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In the limit L = ∞ (for fixed large λ) the string worldsheet becomes
degenerate. In other words, every point on the string moves with the speed
of light.

3.2 Degenerate surfaces and null surfaces.

The surface is called degenerate if the induced metric is degenerate. When
the string moves very fast, the worldsheet becomes a degenerate surface. The
inverse is not quite true; not every degenerate surface can be obtained as a
limit of the string worldsheet, when the velocity of the string approaches the
speed of light. In fact, only a special class of the degenerate surfaces, called
null-surfaces, can be obtained in this way (see for example [10]).

Definition. A null-surface is a degenerate surface ruled by the light rays.
Light rays are also called null-geodesics.

There are two types of light rays in AdS5×S
5, therefore the null-surfaces

in AdS5×S
5 can be of two types. The first type are null-surfaces ruled by the

light rays totally inside AdS5. Such null-surfaces extend to the boundary of
AdS5. They describe the propagation on the string worldsheet of the shock
wave, originating from the cusp on the trajectory of the heavy spectator
quark on the boundary. We will not discuss this type of the null-surfaces
here.

What we need now is the second type of the null-surfaces, those which are
generated by the light rays which are obtained as a diagonal in the product
of a timelike geodesic in AdS5 and an equator in S5, see Fig. 1. Notice
that the time-like geodesics on AdS5 are intersections of planes R2+0 ⊂ R2+4

with the hyperboloid representing AdS5. Therefore the time-like geodesics
in AdS5 are parametrized by the coset space

SO(2, 4)

SO(2) × SO(4)
(11)

And equators of S5 are parametrized by

SO(6)

SO(2) × SO(4)
(12)

Therefore the null-surfaces in AdS5 × S5 are specified by the contours in:

SO(2, 4)

SO(2) × SO(4)
×

SO(6)

SO(2)× SO(4)
(13)

5



T

2π
ψ= 

ψ (periodic)

F(t)

0 t

E

Figure 1: A null-geodesic in AdS5×S
5 is specified by the choice of an equator E in

S5, a time-like geodesic T in AdS5 and a map F : T → E which maps the angular

parameter ψ on the equator to the time t on the geodesic, up to a constant.

This coset space is equivalent to:

SU(2, 2)

S(U(2) × U(2))
×

SU(4)

S(U(2) × U(2))
(14)

This is the bosonic part of the supercoset

PSU(2, 2|4)

PSU(2|2) × PSU(2|2) × U(1)2
(15)

The fermionic degrees of freedom on the worldsheet in the null-surface limit
promote the bosonic coset (14) to the super-coset (15) [7]. The super-coset
(15) can be thought of as a super-Grassmanian parametrizing the embeddings
of the (2|2)-dimensional complex superspaces into a (4|4)-dimensional com-
plex superspace. It is the known as the “(4,2,2) analytic superspace” in the
supersymmetry literature. We can think of it as the super-symmetrization
of the future tube of the Minkowski space [11].

We see that the phase space of the classical parton chain is equivalent

to the moduli space of supersymmetric null-surfaces as a manifold with the
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action of PSU(2, 2|4). One can verify that the symplectic structures also
agree.

What about the Hamiltonian?
It turns out that on the moduli space of null-surfaces, there is a natural

Hamiltonian.
To define this Hamiltonian we have to study the behavior of the extremal

surfaces approximating the null-surface.
Let us denote ε2 = λ/L2. Consider the string worldsheet at finite very

small ε2 — denote it Σ. This is a nearly-degenerate extremal surface. This
extremal surface is locally close to a null-surface, deviation ∼ ε2. Locally

means: Pick a point x0 ∈ Σ; there exists a null-surface Σ0 such that in the
neighborhood of x0 of the radius of the order RAdS the coordinate distance
between Σ and null Σ0 is of the order ε2. But Σ is close to Σ0 only locally! If
we follow the extremal surface Σ later in time, the deviation between Σ and
Σ0 will accumulate. After the time ∆T ∼ 1

ε2
the difference between Σ and

Σ0 will be of the order 1. Then, Σ will approximate a different null-surface,
which we call Σ∆T

0 .

Therefore we have a one-parameter family Σ
(∆T )
0 of null-surfaces. This is

the slow evolution of the null-surface Σ0.
This slow evolution has two important properties:

1. it does not actually depend on the choice of approximating extremal
surface Σ, which we used for its definition1;

2. it is a Hamiltonian flow on the moduli space of the null-surfaces.

Outline of the proof. Let Σ be an approximating extremal surface. We can
choose on Σ a special set of coordinates (σ, τ) so that:







(∂τx)
2 + ε2(∂σx)

2 = 0

(∂τx, ∂σx) = 0
(16)

These coordinates have a good property: the embedding functions x(σ, τ)
have a nice limit when ε2 → 0, describing the embedding of the null-surface
Σ0. In these coordinates the worldsheet action is:

S =
∫

dτdσ
[

(∂τx)
2 − ε2(∂σx)

2
]

(17)

1There is a subtlety here. In fact we should consider parametrized null-surfaces, and
the approximating extremal surface Σ should be such that the spatial coordinate on Σ in
the conformal gauge agrees with the parametrization of Σ0. See [12] for details.
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We can think of the term proportional to ε2 as a small perturbation; the
unperturbed action is:

S0 =
∫

(∂τx)
2dτdσ (18)

It describes a continuous collection of the free massless particles (”string
bits”). The unperturbed system has a remarkable property: all its trajecto-

ries are periodic. Null-surfaces in AdS5 × S5 are periodic, just like solutions
of the free massless equations.

We are in the following situation.

• Null surfaces are described by an integrable system H0 which is highly
resonant: all the trajectories are periodic.

• Passing from the null-surface to the extremal surface corresponds to
the small perturbation ε2∆H.

Because the original system was resonant, the small perturbation qualita-
tively changes the picture of the dynamics. The trajectories of the perturbed
system are not periodic anymore, and the approximating periodic trajectory
(the null-surface) slowly evolves (”secular drift”).

The space of periodic orbits is a symplectic manifold. The long term
evolution is a Hamiltonian flow on this manifold. The Hamiltonian of the slow
evolution is given by averaging 〈∆H〉 of the perturbation over the periodic
trajectory. In our case:

∆H =
∫

dσ(∂σx)
2 (19)

Therefore

〈∆H〉 =
∫ 2π

0
dτ

∫

dσ(∂σx0)
2 (20)

where x0(σ, τ) is the embedding of the null-surface. This formula depends
only on x0(σ, τ) — the null-surface (the choice of the approximating extremal
surface does not enter). It is clear from this formula that the Hamiltonian of
the slow evolution is a local functional of the null-surface.

We have seen that the null-surface is parametrized by a function g(σ)
with values in

SO(2, 4)

SO(2) × SO(4)
×

SO(6)

SO(2)× SO(4)
(21)

One can verify that

〈∆H〉 =
∫

dσ||∂σg(σ)||2 (22)

in agreement with the one-loop result (10) on the field theory side.
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4 Conclusion.

YM operators with the large R-charge should correspond to the long classical
strings on AdS5 × S5. If we knew which operator corresponds to which
classical string worldsheet, it would immediately give us E(λ) exactly in λ.
(As the energy of the string.) Unfortunately, we do not know a priori which
operator corresponds to which worldsheet.

But still, we can say that two Hamiltonian systems (parton chain and
classical string) are equivalent, as Hamiltonian systems. This is a very non-
trivial statement!

Even though locally two Hamiltonian systems with the same dimension of
the phase space are always equivalent, globally there are many obstructions.

We are comparing systems which are defined as perturbation series in
some small parameter. In the order ε2 the slow evolution is the invariant.
We have shown that it matches the YM renormgroup evolution.

In the next order in ε4, the monodromy over the period will give us H2

mod H2 ∼ H2 +{F,H2}. Roughly speaking, the invariant will be the average
of H2 over the invariant tori of H1. This already gives many invariants. But
there are resonant tori therefore there should be more invariants.

Generally speaking we should try to match the integrable structure of
YM to integrable structure of the Type IIB worldsheet. Important steps in
this direction were made in [13, 14, 15].
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