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Abstract

A non-subtractive recipe of Casimir energy renormalization effi-

cient in the presence of logarithmically divergent terms is proposed.

It is demonstrated that it can be applied even then, when energy lev-

els can be obtained only numerically and neither their asymptotical

behavior, nor the analytic form of spectral equation is known. The

results of calculations performed with this method are compared to

those obtained by means of explicit subtraction of divergent terms

from energy.

1 Introduction

Ever since Casimir [1] has obtained corrections to the energy of a macro-
scopic system due to vacuum fluctuations of quantized electromagnetic field
in 1948 this effect has been intensively studied both from theoretical and
experimental points of view. Nevertheless the calculation of Casimir energy
except for the most simple problems involving free fields inside cavities with
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flat boundaries is quite non-trivial yet. To realize this, recall a great number
of papers devoted to a free field in the interior of a sphere [2-11]. Despite the
fact that in this case one can explicitly write out spectral equations, the first
analytical results have been obtained only in [12] for massive scalar field and
in [13] for fermions.

It should be stressed that the knowledge of analytical form of spectral
equation has been crucial in [12] since it makes possible the transition from
the sums containing the unknown energy levels to the integrals with the
explicit integrands [14]. The goal of this paper is to demonstrate a method
which can be applied to numerical calculation of Casimir energy in cases
when these requirements are not met. Moreover, we are not going to use a
rather standard trick [7], [15], which lets one overcome problems arising due
to the presence of logarithmic divergency in Casimir energy of free massless
fields inside spherical shells. Note that logarithmic divergency appears as a
consequence of a curved surface bounding the shell and makes the energy
renormalization ambiguous. The main idea of the trick is to consider the
”inner” and ”extra” problems together since their logarithmic divergencies
cancel each other.

The ambiguity of Casimir energy renormalization in the presence of log-
arithmic divergency is quite obvious. Indeed, in case of massless fields the
energy of the system can be characterized by a single dimensional parameter
L which is the linear size of the system. The regularization parameter α can
be also chosen to have a dimension of length. In the absence of logarithmic
divergency the ”minimal subtraction” of singular terms is not only natural
but also well grounded. Indeed, any term proportional to α−s (s > 0) is
obviously proportional to Ls−1, i.e. to the non-negative power of L. This
makes it possible to normalize the final result at L = ∞, where Casimir en-
ergy should become zero, and subtract all singular terms at the same time.
After such subtraction the only remaining term in the limit α → 0, which
reads cα0/L, provides the final result.

In the presence of logarithmic divergency the subtraction becomes am-
biguous, since in order to renormalize the term cα0 log(α/L)/L, one should
subtract cα0 log(dα/L)/L, where d is an arbitrary constant, which cannot be
determined from the normalizing condition at L → ∞.
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2 Massive scalar field in 1D

To illustrate the main idea of the proposed recipe let’s consider Casimir
energy with the logarithmic divergency in the most simple case, i.e. Casimir
energy of massive scalar field on interval of length L with Dirichlet boudary
conditions at the ends of the interval. It reads:

Ecas =
1

2

∞
∑

n=1

ωn =
1

2

∞
∑

n=1

√

(πn/L)2 + m2 (1)

Note that we aren’t going to subtract the Minkowski vacuum contribution
from (1) as proposed in ”standard” approaches. Instead we will directly pass
to renormalizaton.

The regularization of (1) requires the introduction of the parameter α
which has a dimension of length and stands in the argument of the cut-off
function F (αωn):

E (r)
cas

=
1

2

∞
∑

n=1

ωnF (αωn) (2)

Trivial considerations based on dimensional analysis lead to the following
expression for the regularized Casimir energy

E (r)
cas

' c−2
L

α2
+ c−1

L0

α1
+ c0

1

L
+ cλm

2L log(α/L) + · · · (3)

It can be easily verified that for various cut-off functions such as F (x) =
exp(−x), F (x) = exp(−x2), F (x) = exp(−x3), . . ., F (x) = exp(−x6),
F (x) = exp(−2 cosh(x) + 2), . . ., identical cλ are obtained, while c0 are
different. The identity of cλ for different F (x) can be demonstrated with the
following estimation for the sum giving rise to the logarithmic divergency:

1

2

∞
∑

n=1

1

2

m2

ωn

F (αωn) ∼
m2L

4π
log N (4)

∼ m2L

4π
log(∆xL/α) =

m2L

4π
log(L/α) +

m2L

4π
log(∆x) ,

where N ∼ ∆xL/α and ∆x is a cut-off interval of F (x).
Since any subtraction in the presence of logarithmic divergency is am-

biguous this procedure should be excluded from consideration along with the
logarithmic divergency itself. To realize that let’s calculate ∂2

L
E (r)

cas
:
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∂2
L
E (r)

cas
' c0

2

L3
+ cλ

m2

L
+ · · · (5)

The obtained expression is regular in the limit α → 0, so no subtraction
is required. The knowledge of the function ∂2

L
E (r)

cas
, lets one reconstruct the

required E (r)
cas

unambiguously, since the initial conditions at L → ∞ are well-
known: both E (r)

cas
and ∂LE (r)

cas
should become zero. Note that while (5) doesn’t

describe the asymptotical behavior of ∂2
L
E (r)

cas
at L → ∞, it demonstrates the

disappearence of all singular terms in it. Moreover the following integral
approximation shows that ∂2

L
E (r)

cas
vanishes for L → ∞:

E (r)
cas

=
1

2

∞
∑

n=1

ωnF (αωn) = (6)

=
1

4

∞
∑

n=−∞

ωnF (αωn) −
m

4
F (αm) ≈

≈ 1

2

∫

∞

−∞

dx(L/π)
√

x2 + m2F (α
√

x2 + m2) − m

4
F (αm)

3 Method of calculation in general case

Let’s generalize the proposed method in such a way that it doesn’t require the
analytical expression for energy levels. Suppose one has a set of energy levels
of some spectrum ωn and the corresponding Casimir energy contains the
logarithmic divergency. First of all it turns out to be possible to modify the
initial expression for the Casimir energy by introduction of some parameter
µ in such a way that

1

2

∞
∑

n=1

√

ω2
n
− µ2F (α

√

ω2
n
− µ2) (7)

doesn’t contain the logarithmic divergency. For the massive scalar field on
an interval µ is obviously equal to the mass of the field. In less trivial three-
dimensional cases with spherical symmetry µ is some parameter having a
dimension of mass which characterizes the total coefficient by the logarithmic
divergency with all values of angular momentum taken into account.

The next step is to introduce an ”additional mass” of the field M and
study the Casimir as a function of it in the range from M = 0 to M = ∞.
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In fact it’s helpful to introduce another parameter M : M 2 ≡ M2 + µ2 and
study the modified Casimir energy

Ecas(M) =
1

2

∞
∑

n=1

√

ω2
n

+ M2 − µ2 (8)

as a function of M in the range from M = ∞ to M = µ. To realize this one
should calculate numerically the following quantity in the specified range of
M :

∂2
M

(

E (r)
cas

(M)/M
)

= (9)

= ∂2
M





1

2

∞
∑

n=1

√

ω2
n
− µ2

M2
+ 1 F



α

√

ω2
n
− µ2

M2
+ 1









Note that in contrast to our previous considerations we have substituted
dimensionless quantity

1

M

√

ω2
n

+ M2 − µ2 =

√

ω2
n
− µ2

M2
+ 1

to the argument of F (x), so that α should be also taken dimensionless.
An alternative interpretation of (9) follows from the observation that M

acts as an effective length L in the expression for Casimir energy. Indeed,
(9) can be obtained from the initial expression as a result of the folowing
transformation of the spectrum. At the first step ωn is transformed to ω′

n
=

√

ω2
n
− µ2/µ, which is dimensionless spectrum with the subtracted effective

mass. After that the scale transformation of the system x → x(M/µ) and
ω′

n
→ ω′′

n
= ω′

n
/(M/µ) is performed. In the end the unit mass is ”added” to

the obtained spectrum:

ω′′

n
→

√

(ω′

n
)2 + 1 =

√

ω2
n
− µ2

M2
+ 1 (10)

The limit M → ∞ obviously corresponds to the infinite size of the system,
while for M = µ one obtains the initial spectrum divided by µ.

It’s easy to see that all divergent terms in (9) vanish. In the limit n → ∞
one can make use of the following expansion

√

ω2
n
− µ2

M2
+ 1 ≈

√

ω2
n
− µ2

M
+

M

2
√

ω2
n
− µ2

+ · · · (11)
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The first term in this expansion gives rise to the sum which is free of logarith-
mic divergency due to the definition of µ. Other divergencies are proportional
to (M/α)2/M and (M/α)1/M and vanish when the second-order derivative
is calculated. The second term leads to the logarithmic divergency with the
coefficient proportional to M 1 by it, which also vanishes.

As a result one has (9) regular for α → 0 and the natural normalizing
condition Ecas(M → ∞) = 0. The latter can be understood from two different
points of view. On one hand the quantized field with the infinitely large mass
should have zero Casimir energy. On the other hand the Casimir energy in
the limit of the infinite size of the system should become zero. Whichever
interpretation is chosen, the obtained results let one reconstruct the required
Ecas(M = µ) which corresponds to the initial spectrum.

Note, that principally one could consider E (r)
cas

(M) instead of E (r)
cas

(M)/M .
However that would increase the order of derivative required to exclude all
divergent terms by one what is undesirable from the practical point of view.

The proposed method turns out to be efficient not only in the most trivial
one-dimensional cases but also in more realistic three-dimensional ones. How-
ever to employ it in three-dimensional case one should inevitably calculate
the fourth-order derivative of the Casimir energy (9) since the main singular
term, which is proportional to the volume of the system, reads c−4L

3/α4.
It should be also noted that in this case the calculations of the sums be-
come more sophisticated since the final value of a typical sum is about 40
orders lower than intermediate values obtained during its calculation and
extra floating-point precision is required.

4 Numerical results

For scalar field on an interval [0; L] with L = 1 spectrum reads

ωn =

√

(πn)2

L2
+ m2 (12)

The result of the straightforward application of our method with vari-
ous cut-off functions such as F (x) = exp(−x), F (x) = exp(−x2), F (x) =
exp(−x3), . . ., F (x) = exp(−x6), F (x) = exp(−2 cosh(x) + 2) is presented
on Fig.1. It has been shown that for each of these functions the same result
is obtained and what’s more the precision of coincidence depends only on the
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number of energy levels taken into account and the number of right digits
used in the realization of floating-point arithmetics as well.

As to dependence of the Casimir energy on the mass of the field some
important aspects should be stressed. First of all in the limit m → 0 a
well-known result for the massless scalar field is obtained. In the range of
large values of m Casimir energy decreases exponentially as e−2mL what could
be expected from qualitative considerations. The results obtained with our
method in this trivial case are in agreement with those obtained using the
traditional subtractive technique.

To demonstrate how the method can be employed in less trivial cases we
consider the massless scalar field inside of a spherical shell of radius R = 1.
In this case the same set of cut-off functions has been used. The values of
an effective mass µ = 0.1377 obtained with each of these functions coincide
up to the first four digits. Consequently the precision of the obtained Ecas =
3.790 ·10−3 has the same order, what corresponds to about 200 s-levels taken
into account during the calculations. The number of energy levels taken into
account is directly affected by the range which the regularization parameter α
used in the calculations belongs to. Therefore one can control precision of the
final result simply changing the range of employed values of the regularization
parameter.

Note that in the framework of this approach we have obtained not only
Casimir energy of the massless scalar field (corresponding to M = 0) but
also Casimir energy for all possible values of mass in the range from zero to
the ”effective” infinity. The dependence of the Casimir energy of the scalar
field inside the sphere on the mass of the field is presented on Fig.2.

It should be stressed that on the contrary to the results obtained with the
traditional subtractive technique in [12] our result doesn’t contain logarith-
mical singularity at M = 0 what seems more reasonable from physical point
of view. The most likely explanation of this difference is that the subtractive
procedure contains some arbitrariness. As a result some function which has
regular behavior at M → ∞ but is singular at M → 0 could be subtracted
from the final result.

As has been pointed out in [12,15] there is no argument at present which
can remove this arbitrariness in case of a massless scalar field inside of a
sphere. Therefore Casimir effect in the whole space with Dirichlet bound-
ary conditions on the sphere is usually considered. It seems reasonable to
calculate the Casimir energy in the last case employing our method.

In fact there are two ways to proceed to take exterior into account. The
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first one deals with the continuous spectrum and requires that all the regu-
larized sums be replaced with the appropriate integrals containing the energy
levels density in the integrand. The second way lets one work with discrete
spectrum all the time. To realize that one should place the initial spherical
shell into another sphere with the radius Rout = kRin where k ≥ 1 and cal-
culate the Casimir energy for the system bounded by the outer sphere taking
into account boundary conditions on both of the spheres. For each finite k
the spectrum is discrete and the developed technique can be applied without
modification. The required result can be achieved in the limit k → ∞. In
practice it turns out that for k ≥ k0, where k0 is finite and depends on the
required precision, the result doesn’t depend on k. It turned out that in the
considered case in order to get 4 right digits in the final result k0 ' 10 is
quite enough.

The final result of the calculations is presented on Fig.3. Note that
while the qualitative behavior of Casimir energy is the same as that ob-
tained with methods employing explicit subtraction [15], there is no abso-
lute coincidence. For example, for the massless field the result obtained
with our recipe is Ecas(M = 0) = 0.0039 while direct subtraction leads to
Ecas(M = 0) = 0.0028.

5 Conclusion

To summarize, an efficient technique for numerical calculation of Casimir en-
ergy in the presence of logarithmical divergencies has been developed. The
advantages of the proposed method are its ideological triviality and univer-
sality which let one apply it to a wide range of problems in which numerical
values for energy levels can be obtained. The results of its application to a
number of problems appear to be reasonable, especially in case of a curved
boundary. As to disadvantages they are purely technical: one should employ
floating-point arithmetics with extra precision to carry out calculations in
realistic cases.
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Figure 1: The Casimir energy of the massive scalar field on a unit interval
as a function of the mass of the field.
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Figure 2: The Casimir energy of the scalar field inside of a spherical shell of
radius 1 obeying Dirichlet boundary conditions as a function of the mass of
the field.
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Figure 3: The Casimir energy of a massive scalar field in the whole space
with Dirichlet boundary condition on a sphere of radius 1 as a function of
the mass of the field.
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