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Abstract

We consider a process of soliton production in collisions of a few
highly energetic particles. This process is studied semiclassically in
a simple field theoretical model. We observe that the properties of
the process are qualitatively different in the cases when the energy
of colliding particles is lower and higher than some critical value Ec.
Namely, at E < Ec direct tunneling to the soliton sector takes place,
whereas the relevant semiclassical configurations with energies higher
than Ec correspond to jumps on top of the potential barrier separating
the soliton from the vacuum. We argue that the processes of soliton
production remains exponentially suppressed up to extremely high
energies.

1 Introduction

There are many field theoretical models where one discovers solitons, local-
ized solutions to the classical field equations. In a situation when the de
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Broglie wavelength of a soliton is much smaller than its size, the soliton cor-
responds to a “classical” state of quantum theory. The question we address
here is whether it is possible to create a classical soliton colliding a few highly
energetic particles.

The process under discussion belongs to a class of collision–induced tun-
neling processes which have been extensively studied in literature. Generally,
the processes of this kind are exponentially suppressed up to a very high ener-
gies of colliding particles. In particular, the semiclassical results of Refs. [1, 2]
confirm the exponential suppression of the induced tunneling processes in the
cases of false vacuum decay in scalar theory and baryon number violation in
SU(2) Higgs theory. Furthermore, investigations of toy models [3, 4] and
unitarity arguments [5] indicate that the process of induced tunneling should
remain exponentially suppressed, even when the energy of collision tends to
infinity. In accordance with general expectations, our results show that the
process of induced creation of a soliton is exponentially suppressed up to a
very high energies.

The model we consider describes free scalar field φ(t, x) living in (1+1)
dimensions on a half–line x > 0, with interactions localized at the boundary
point x = 0. The action of the model is

S =
1

2

∫

dt

∞
∫

0

dx
[

(∂µφ)2 − m2φ2
]

− µ

g2

∫

dt [1 − cos(gφ(t, 0))] . (1)

The second term represents boundary interaction with characteristic energy
scale µ. The bulk mass m is introduced as an infrared regulator, it is supposed
to be small compared to the boundary scale µ. In the main body of the article
we adopt the limit m → 0, as the small mass turns out to be irrelevant for
our study.

The model (1) possesses a static soluton which, up to corrections of order
m/µ, has the form

φsol(x) =
2π

g
e−mx .

This solution is localized near the boundary, x = 0, so it is natural to call it
“boundary soliton”. The mass of the soliton,

M =
2π2

g2
m , (2)

is relatively small, as it is proportional to the bulk mass m.
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The process we consider in this paper is creation of the soliton in collision
of one or several particles with the boundary; the total energy of particles
is assumed to be much larger than the soliton mass. To start with, let us
consider the classical analog of this process, which is the creation of the
soliton in collision of a classical wave packet with the boundary. It is easy to
see that the classical process is possible only if the energy of the wave packet
exceeds some threshold energy ES. Indeed, the boundary value φ(t, 0) of the
relevant classical solution changes from 0 to 2π/g during the process. The
classical solution passes the maximum of the boundary potential, π/g, at
some moment of time, and thus the total energy of this solution is larger
than the maximum boundary energy

ES =
2µ

g2
. (3)

One concludes that any state containing boundary soliton is separated from
the vacuum by a potential barrier. It is straightforward to find static config-
uration “sitting” on top of the barrier, which we call “sphaleron” following
Ref. [6]. This is an unstable static solution of the classical field equations
representing the saddle point of static energy functional. In our model it has
the same exponential form as the soliton but with the boundary value on top
of the boundary potential,

φS =
π

g
e−mx .

The energy of the sphaleron is given by Eq. (3), again up to corrections of
order m/µ.

We see that soliton production in collisions of particle(s) with the bound-
ary is classically forbidden and hence exponentially suppressed at energies
smaller than the sphaleron energy. The question is what happens when the
energy grows. In this paper we study this question applying semiclassical
methods. The semiclassical approximation is justified by the following ob-
servation. After rescaling of the field, φ → φ/g, the coupling constant g
enters the action only through the overall multiplicative factor 1/g2. There-
fore, g2 plays the role of the Planck constant ~, and the weak coupling limit
corresponds to the semiclassical situation. This is the case we consider in
this paper.

3



2 The boundary value problem

2.1 General formalism

In this work we adopt the semiclassical method of Ref. [7]. Let us consider
the inclusive probability of tunneling from multiparticle states with energy
E and number of particles N :

P(E, N) =
∑

i,f

∣

∣

∣
〈f |ŜP̂EP̂N |i〉

∣

∣

∣

2

, (4)

where Ŝ is the S-matrix while P̂E and P̂N are projectors onto states with
given energy and number of particles. The states |i〉 and |f〉 are perturbative
excitations above the vacuum and soliton respectively. The function (4)
can be calculated with the use of semiclassical methods, provided that the
energy and initial number of particles are semiclassically large, E = Ẽ/g2,
N = Ñ/g2. The result has the exponential form,

P(E, N) ∝ e−F (Ẽ,Ñ)/g2

.

Then, the exponent F (Ẽ) in a few–particle case is obtained as a limit of the
multiparticle one:

F (Ẽ) = lim
Ñ→0

F (Ẽ, Ñ) . (5)

This method has been confirmed by calculations made in several models [8,
9, 10]. To simplify notations, we omit tilde over E and N below.

Transitions with large fixed initial number of particles are described by
solutions of the so–called T/θ boundary value problem [7]. The latter is for-
mulated on the contour ABCD in complex time shown in Fig. 1. Namely, the
configurations describing tunneling should satisfy the classical field equations
in the internal points of the contour,

(∂2
t − ∂2

x + m2)φ = 0, x > 0 , (6a)

∂xφ = µ sin φ, x = 0 . (6b)

The Euclidean part BC of the contour may be interpreted as representing
the evolution of the field under the barrier, “duration” T of this evolution
is a parameter of solution. Field equations (6a), (6b) are supplemented by
initial and final boundary conditions in the parts A and D of the contour
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Figure 1: Contour in complex time where the boundary value problem is
formulated

respectively. Namely, the field φ is real as t → +∞; it describes motion in
the final state,

Im φ → 0 as t → +∞ . (6c)

Evolution in the initial state is linear,

φ(t′ + iT, x)

∣

∣

∣

∣

∣

t′→−∞

=
1

(2π)1/2

∫

dk√
2ωk

(

fke
−iωkt′+ikx + g∗

ke
iωkt′−ikx

)

, (6d)

and the boundary conditions in the part A of the contour relate positive and
negative frequency components of the solution,

fk = e−θgk . (6e)

The boundary condition (6e) can be understood as follows. In the limit θ →
+∞ it coincides with the Feynman boundary condition and thus corresponds
to the initial state with semiclassically small number of particles. Finite θ
represents the most favourable state with non–zero N . Given the values of
T and θ, one determines complex solution φ(t, x; T, θ) from equations (6a)–
(6e). Energy and initial number of particles for this solution are given by the
familiar formulae:

E =

∫

dk ωkfkg
∗
k, N =

∫

dk fkg
∗
k . (7)

Alternatively, they can be determined by differentiating the action functional
evaluated on the solution with respect to parameters T and θ,

E =
∂

∂T
ImS(T, θ) , N = 2

∂

∂θ
ImS(T, θ) , (8)
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where S is the action of the model calculated along the contour ABCD. The
suppression exponent of the process is given by the Legendre transform of
the action functional,

F (E, N) = 2 ImS − Nθ − 2ET . (9)

Below we refer to the problem (6) as “T/θ-problem”, and use the term “θ–
instanton” for the relevant semiclassical solution.

Two remarks are in order. First, the boundary value problem (6) does
not guarantee that its solutions interpolate between states with and without
the soliton. In the next subsection we describe additional requirements that
should be imposed to ensure that solutions are relevant for tunneling.

Second, one observes that the solution φ(t, x) can be analytically contin-
ued to the complex time plane, and in this way the contour ABCD may be
deformed without affecting the integral (9) for the suppression exponent. The
only thing one should worry about while deforming the contour is to avoid
the singularities of solution, shown schematically by double lines in Fig. 1.
Below it will be convenient not to be attached to a contour of any particular
form. Instead, we look for solution φ(t, x) satisfying Eqs. (6a), (6b) in the
entire complex time plane, with boundary conditions (6c) and (6e) imposed
in the asymptotic regions D and A of the complex plane. When using this
approach, one should guarantee, however, that the asymptotic regions A and
D can be connected by a contour avoiding the singularities of solution.

2.2 Reformulation of the problem in complex plane

In this subsection we adapt the T/θ-problem (6) for the specifics of the
model (1). The key observation here is that the characteristic frequency of
solutions under consideration is of order of the boundary scale µ � m. Thus,
the mass term in the bulk equation (6a) can be neglected, and the general
solution has the form

φ(t, x) = φi(t + x) + φf (t − x), (10)

where φi and φf are the incoming and outgoing wave packets, respectively.
They are related by boundary condition (6b):

φ′
i(z) − φ′

f(z) = µ sin (φi(z) + φf(z)), (11)
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where we have promoted t to the complex variable z. It is natural to con-
sider φi and φf as analytic functions of z, and reformulate the rest of the
problem (6), i.e. conditions (6c) and (6e), in the complex z–plane.

Let us consider asymptotic future, t → +∞ (region D in Fig 1). In this
limit field φ(t, x) is represented by the outgoing wave packet φf(t− x) whose
argument z = t − x runs all the way along the real axis as x changes from 0
to +∞. So, condition (6c) can be written in the following way,

Im φf(z) = 0, when z ∈ R . (12)

On the other hand, it is the in–going wave packet φi(t + x) which survives
in the asymptotic past t → −∞ + iT (region A of Fig. 1), the argument
of function φi(z) runs along the line Im z = T when x ∈ [0, +∞). So,
condition (6e) is reformulated in terms of function φi. Namely, one performs
Fourier expansion of φi along the line Im z = T ,

φi(z) =

∫

dk φi(k)eik(z−iT ) =

=

∫

k>0

dk
{

φi(k)eik(z−iT ) + φi(−k)e−ik(z−iT )
}

. (13)

Taking into account that z = t′ + iT + x for the initial wave packet, one
compares Eq. (13) to Eq. (6d) and finds that positive and negative frequency
components f−k and g∗

−k of solution are proportional to φi(−k) and φi(k),
k > 0, respectively. Equation (6e) takes the form

φi(−k) = e−θφi
∗(k) , k > 0. (14)

Given this condition, function φi can be represented as

φi(z) = χ(z − iT ) + e−θ[χ(z∗ + iT )]∗, (15)

where function

χ(z) =

∫ ∞

0

dk φi(k)eikz . (16)

is regular in the upper half plane of its complex argument. Equation (15)
provides an alternative formulation of the θ–boundary condition. Note that if
the number of incoming particles is finite, the in-going wavepacket is localized
in space. This implies

φi(z) → 0 , z → ±∞ + iT . (17)
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To summarize, the T/θ–problem is represented by equations (11), (12) and
(15) formulated in the complex z–plane.

To make sure that solution of the above problem is relevant for tunneling,
one should check that the value of the field at the boundary x = 0 has correct
asymptotics in the beginning and the end of the process. Namely, in the case
of direct tunneling with soliton in the final state, φ(t, 0) must change from 0
to 2π. In Sec. 4 we encounter configurations describing creation of sphaleron
at t → +∞; in that case φ(t, 0) changes from 0 to π. Thus, one obtains the
following conditions:

φi(z) + φf(z) → 0 as z → −∞ + iT, (18a)

φi(z) + φf(z) → 2π or π as z → +∞. (18b)

Finally, let us analyze the issue of existence of a time contour connecting
asymptotic regions A and D in Fig. 1. To this end, note that any singularity
zs

i of the function φi(z) produces a whole half–line of singularities ts = zs
i −x

in the time plane, which starts from the point zs
i and extends to the left

parallel to the real time axis, see Fig. 1. One requires that all these half–lines
of singularities of the function φi(t + x) in the strip Im t ∈ [0, T ], in complex
time plane, should be located to the left of the relevant contour. Analogously,
one observes that all the singularities of function φf(t−x) in this strip should
be located to the right of the relevant contour. It is clear that one is always
able to find some contour connecting regions A and D which leaves the
singularities of φi(t + x) and φf(t− x) to the left and right of it respectively,
provided that the singularities of these two functions do not coincide. In
terms of the variable z this amounts to requiring that the singularities, inside
the strip Im z ∈ [0, T ], of the initial and final wave packets φi(z) and φf(z)
are situated at different points. Note that this condition is non-trivial, as the
functions φi and φf are related by differential equation (11).

Formula (1) for the action can also be rewritten in terms of wave packets:

S =

∫

C

dz

{

1

2
(φi + φf)(φ

′
i − φ′

f) − µ(1 − cos(φi + φf))

}

. (19)

The form of the coutour C here is somewhat similar to the time contour
ABCD in Fig. 1, it interpolates between the asymptotic regions z → −∞+iT
and z → +∞, leaving the singularities of functions φi and φf in the strip
Im z ∈ [0, T ] to the left and right respectively.
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3 Direct soliton production at low energies

We now proceed to solutions with θ 6= 0. Let us make the following obser-
vation: if φi is real on the real axis, function φf determined from Eq. (11)
with real initial condition, is automatically real at the real axis. Thus, all
we need is an Ansatz for φi, which satisfies condition (15) and is real on the
real axis. One constructs the required Ansatz in the following way1:

φi =
+∞
∑

n=−∞

e−θ|n|
(

i ln
[µ

2
(z − iT0 − i2Tn)

]

−i ln
[µ

2
(z + iT0 − i2Tn)

])

. (20)

Here T0 is a real parameter. Is straightforward to check that function φi

determined by (20) can be represented in the form (15).
In order to determine the parameter T0 of the Ansatz, let us analyze

equation (11) in the vicinity of the point z = iT0. One represents function
φi in the form

φi = i ln
[µ

2
(z − iT0)

]

+ Ri(z) , (21)

where Ri(z) is regular at z = iT0. Two leading terms of the power series
expansion of Eq. (11) at the point z = iT0 yield,

ei(Ri(iT0)+φf (iT0)) = −1 , (22)

R′
i(iT0) = 0 . (23)

These formulae deserve a comment. Considering Eq. (11) with given φi

as an ordinary differential equation for function φf , one might expect all
Taylor coefficients of φf to be determined in terms of function Ri(z) and free
integration constant φf(iT0). However the fact that z = iT0 is a singular
point of Eq. (11) makes situation quite different. Requirement of regularity
of φf at this point fixes the value of φf(iT0) according to Eq. (22), while the
role of integration constant is played by φ′

f(iT0); besides, constraint (23) on
function Ri appears. The latter constraint enables to determine parameter
T0,

T0 = Tα(θ) , (24)

1In fact, one can show that (20) is the most general Ansatz for function φi, once
requirement of its reality on the real axis is imposed.
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where function α(θ) is implicitly defined by relation

2α2
∞

∑

n=1

e−θn

n2 − α2
= 1 . (25)

Function φi is now completely fixed, and φf can be obtained by numerical
integration of Eq. (11). This issue is discussed at the end of this subsection.

Let us evaluate the imaginary part of action on the tunneling solution.
Surprisingly, the detailed knowledge of φf is not needed for this purpose.
Reality of solution on the real axis implies that the complex conjugate action
S∗ is given by an integral of the same function as in Eq. (19), but with
different contour of integration C∗, which is complex conjugate to C. Thus,

2 ImS = −i(S − S∗) = −i

(
∫

C

Ldz −
∫

C∗

Ldz

)

= −i

∮

Co

Ldz . (26)

In the last equality we deformed the sum of the contours C and C∗ into
contour Co enclosing singularities2 z = ±iT0 of the function φi. Calculation
of integral (26) is straightforward:

2 ImS = 4π Im φf (iT0) + 4π . (27)

Using Eq. (22) one substitutes Ri(iT0) for φf(iT0), takes the former from
Eq. (20) and performs summation. The result is

2 ImS = 4π ln(µTα) + 4π − 16π

∫ ∞

0

sh2
(

αy
2

)

ey+θ − 1

dy

y
. (28)

Energy and number of incoming particles are determined from expression
(28) in the standard way, see Eqs. (8). We find that energy is given by the
formula

E =
2π

T
, (29)

while the number of incoming particles is

N = 4π

∫ ∞

0

sh2
(

yα(θ)
2

)

sh2
(

y+θ
2

)

dy

y
. (30)

2In the course of deformation the contour does not cross singularities of φf according
to conditions discussed in Sec. 2.2.
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In the limit θ → +∞ corresponding to the case of a few incoming parti-
cles, the formula for the suppression exponent simplifies,

F
∣

∣

N=0
= 4π ln

[

2πµ

E

]

. (31)

At first sight Eq. (31) suggests that suppression vanishes when energy reaches
the value 2πµ. In fact, this is not the case: formula (31) is inapplicable at
energies above some critical energy Ec < 2πµ. The point is that no solution
φf(z) of Eq. (11) with required properties exists at energies E > Ec. Let us
clarify this issue.

While the analysis can be carried for arbitrary θ, it is particularly trans-
parent in the case θ = +∞. In this limit the Ansatz (20) simplifies:

φi = i ln
z − iT

z + iT
. (32)

It is convenient to consider Eq. (11) on the real axis. Introducing u = φi +φf

and ζ = z/T , one writes Eq. (11) in the following form,

du

dζ
= −λ sin u − 4

ζ2 + 1
, (33)

where λ = µT . In new terms requirements (18), stating that solution is
relevant for soliton production, imply the following boundary conditions for
u along the real axis:

u → 2π , ζ → −∞ , (34a)

u → 2π or π, ζ → +∞ . (34b)

Condition (34a) follows from Eq. (18a) when one takes into account that
asymptotic region z → −∞ + iT and the real axis lie on different sides of
logarithmic cut of function φi. Condition (34a) fixes solution of equation
(33) uniquely. Then, the question is whether this solution satisfies boundary
condition (34b). We have analyzed this issue numerically. The result is as
follows. When λ is greater than λc, the solution of Eqs. (33), (34a) has the
correct asymptotics (34b), so, the configuration does describe production of
the soliton. On the other hand, when one lowers λ below the critical value λc,
the asymptotics of the function u at ζ → +∞ change to 0. As u represents
the value of the field at the boundary x = 0 (c.f. Eq. (10)), one concludes
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that the final state of the process at λ < λc is the trivial vacuum, and no
actual tunneling takes place. At the critical value, λ = λc, function u tends
to π when ζ → +∞, and solution describes production of the sphaleron in
the final state. Numerically, we find

λc = 2.62 , (35)

this value corresponds to energy Ec = 1.2ES. Tunneling at critical energy is
still exponentially suppressed:

F (N = 0, E = Ec) = 4π ln λc . (36)

The picture we encounter here has been observed recently in quantum me-
chanics of two degrees of freedom [10] and in gauge theory [2]. Results ob-
tained in both cases indicate that transitions at energies higher than critical
proceed in two stages, creation of sphaleron and its subsequent quantum de-
cay into relevant final state. Probability of the latter process is of order one,
while the former is exponentially suppressed. Corresponding semiclassical
solutions contain sphaleron at t → +∞. In order to find such solutions one
has to abandon the requirement of reality of the incoming wave packet φi on
the real axis and thus the Ansatz (20).

4 Jumps onto sphaleron

At energies higher than Ec the Ansatz (20) is no longer applicable. Still,
one can extract some information on the properties of φi from analysis of
Eqs. (11), (15). First, one can show that the singularity of φi situated inside
the strip Im z ∈ [0, T ] is necessarily logarithmic. Let us denote the position of
this singularity by iT0. The function φf is regular at the point z = iT0, so φf

and φ′
f can be replaced by constants in the small vicinity of this point. Then,

integration of Eq. (11) produces function φi(z) with logarithmic singularity.
Thus the function φi has the form (21) with the function Ri regular in

the strip Im z ∈ [0, T ]. Besides, one observes that conditions (22), (23) on Ri

are still valid, as their derivation does not make use of any particular Ansatz
for φi. Finally, due to Eq. (15), presence of the logarithmic singularity of φi

at z = iT0 entails existence of another singularity of φi with the structure

−ie−θ ln
[µ

2
(z − i(2T − T0))

]

. (37)
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This information enables one to cast the T/θ problem in the limit θ → +∞
into the form directly accessible to numerical analysis. We now proceed to
formulation of the corresponding equations.

According to Eq. (15), the function φi becomes regular in the half-plane
Im z > T when e−θ tends to zero. As for its singularity in the strip 0 <
Im z < T , it hits the line Im z = T in the considered limit. To demonstrate
this explicitly, we write

φi = i ln
[µ

2
(z − iT0)

]

− ie−θ ln
[µ

2
(z − i(2T − T0))

]

+ R̃i(z) , (38)

where R̃i(z) is regular both at iT0 and i(2T −T0). Equation (23) then implies

e−θ

T − T0

= −2R̃i
′
(iT0) . (39)

This equation implies that T0 approaches T when e−θ → 0. We conclude
that after taking the limit θ → +∞ the function φi has the form

φi = i ln
[µ

2
(z − iT )

]

+ R̃i(z) , (40)

where R̃i(z) is regular in the upper half-plane.
As in Sec. 3, it is convenient to consider equations for functions φi and

φf on the real axis3 z = x ∈ R. Again, one should be careful about the
asymptotics x → ±∞. The function φi satisfies condition (17), as we are
dealing now with the case of finite number of incoming particles. Taking into
account the logarithmic cut of φi in the strip 0 < Im z < T (c.f. Sec. 3) and
conditions (18), one obtains

φi → 2π, φf → 0 when x → −∞ , (41a)

φi → 0, φf → π when x → +∞ . (41b)

Note that asymptotics of φf at x = +∞ reflects formation of the sphaleron
in the end of the tunneling process.

3Do not confuse x which is the real part of the variable z, with the spatial coordinate
x.
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A convenient expression for the action functional is obtained in the fol-
lowing way:

2 Im S = 2 Im

∫

C

dz(φfφ
′
i − µ(1 − cos(φi + φf)))

= 4π Im R̃i(iT ) + 4π+ (42)

+ 2 Im

∫ ∞

−∞

dx(φfφ
′
i − µ(1 − cos(φi + φf ))) . (43)

In the second line we used Eq. (22) and took the limit T0 → T . Integration
in the last term is performed along the real axis; the first two terms account
for the residue of the integrand in the logarithmic singularity of φi. Finally,
let us present convenient formulae for the energy of solution. One finds two
different expressons for the energies of initial and final state; we denote these
energies Ei and Ef respectively4. For the final energy it is straightforward
to obtain

Ef = 2µ +

∫ ∞

−∞

dz(φ′
f)

2 , (44)

where the first term is due to presence of the sphaleron in the final wave
packet. The analogous expression for initial energy has the form,

Ei =

+∞+iT
∫

−∞+iT

dz(φ′
i)

2 . (45)

In the limit e−θ � 1 integral in (45) is saturated by contribution of the
singularity at z = i(2T − T0). One obtains

Ei = 2π
e−θ

T − T0
= −4πR̃′

i(iT ) , (46)

where in the second equality we used Eq. (39).
We have performed numerical solution of the following set of equations

formulated on the real axis: differential Eq. (11) with boundary conditions
(41), condition of reality of φf (Eq. (12)), analyticity condition (40). Details
of our numerical method are presented elsewhere [11]. Let us mention here

4Evidently, Ei equals Ef for any solution of equations of motion.
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Figure 2: Dependence of the suppression exponent F on the collision energy
E, measured in units of sphaleron energy ES = 2µ/g2. Tunneling process
is driven by physically different mechanisms in parts I and II of the graph.
Points represent numerical data obtained in region II.

an interesting property of the solutions. One notes that the above set of
equations is invariant under the transformation

φi(z) 7→ 2π −
(

φi(−z∗)
)∗

, (47a)

φf(z) 7→ π −
(

φf(−z∗)
)∗

. (47b)

We find that tunneling solutions at E > Ec are symmetric with respect to this
transformation. This property reflects that they are qualitatively different
from solutions at energies lower than critical.

The imaginary part of action, energy and suppression exponent are cal-
culated according to formulae (43), (44), (46); we use equality of initial and
final energies as a cross–check of precision of numerical calculations. Results
for suppression exponent F (N = 0) are presented in Fig. 2. They cover the
interval Ec < E < 2.3ES of the region II. Let us stress that our numerical
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solutions describe tunneling with exactly zero number of incoming particles.
The fact that one is able to find such solutions is a peculiarity of the model.
Unlike in the case of more complicated systems [2] we do not need to perform
calculations at finite N .

5 Conclusions

Let us summarize the results obtained in this article. We calculated semiclas-
sically the probability P of the soliton production in collision of one or several
particles. In the leading semiclassical approximation it has the exponential
form,

P ∝ e−F/g2

.

Our results for the dependence of the suppression exponent F on energy of
incoming particle(s) are collected in Fig. 2. We observe that if the collision
energy is smaller than critical value Ec = 1.2ES (region I of the graph),
tunneling occurs in a conventional way with the relevant semiclassical con-
figurations ending up directly in the soliton sector. We find a simple analytic
formula for the suppression of such transitions:

F (E) = 4π ln

[

πES

E

]

, E < Ec . (48)

Formula (48), if continued to the energies higher than the critical energy
Ec, would show that the transitions become unsuppressed at energy πES.
Hovewer, it is incorrect at E > Ec, as the solutions describing direct tunneling
cease to exist at energies higher than the critical one.

Semiclassical configurations with energies above Ec are obtained numer-
ically. We find that their symmetry properties are different from the ones
below the critical energy, and, what is more important, the tunneling mech-
anism they describe is entirely different. Instead of tunneling directly to
the other side of the barrier, the system jumps on its top, thus creating the
sphaleron configuration which then decays producing the soliton in the fi-
nal state. The second stage of the process, decay of the sphaleron into the
soliton, proceeds with probability of order one. Still, transitions remain ex-
ponentially suppressed due to considerable rearrangement the system has to
undergo during the first stage of the process, i.e. formation of the sphaleron.
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Finally, let us speculate on exponential suppression of soliton production
at higher energies. From Eqs. (8), (9) one obtains:

∂F

∂E
= −2T . (49)

Let us also recall that the value of T decreases with increase of energy. The
highest–energy solution which we managed to obtain numerically has E =
2.3ES, T = 0.03, F = 10.3. Thus, from Eq. (49) we obtain:

∣

∣

∣

∣

∂F

∂E

∣

∣

∣

∣

< 0.06 at E > 2.3ES .

Integrating this inequality, we learn that the process under discussion remains
exponentially suppressed at least up to 170 sphaleron energies.
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