
Gaussian Effective Potential

in Light Front φ4
1+1

G. B. Pivovarov

Institute for Nuclear Research,

Moscow, 117312 Russia

E-mail: gbpivo@ms2.inr.ac.ru

September 14, 2004

Abstract

Gaussian effective potential is obtained for φ4
1+1 quantized on a

light front. It coincides with the one obtained previously within the

equal time quantization. The computation of the paper substantiates

the claim that light front quantization reproduces the phase structure

of the theory implied by the equal time quantization.

Gaussian effective potential (GEP) can be computed nonperturbatively
for any theory whose Hamiltonian is a polynomial in canonical variables.
Its meaning is discussed in [1], where it was demonstrated that, e.g., for
φ4

1+1, GEP has nontrivial minima at nonzero value of the field that become
absolute minima beyond a critical value of the coupling. The critical value of
the coupling predicted by GEP for φ4

1+1 is in agreement with the critical value
obtained in the lattice computation [2]. The treatment in [1] is performed
within the equal time quantization.

There is an alternative approach to quantization of fields possessing a
number of advantages. It is the so-called light front quantization (for a
review, see [3]). One of the objections against this scheme of quantization
is that it has troubles in reproducing the known facts about phase structure
of quantum field theories. A good test case is the theory φ4

1+1, because it is
proved rigorously for this theory that there is a spontaneous breaking of the
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reflection symmetry φ → −φ. It takes place when the coupling goes beyond
a critical value.

It can be demonstrated heuristically that the phase transition persists in
φ4

1+1 under the light front quantization (see [4]). In [4], Chang’s reasoning
[5] was extended to the light front quantization. This reasoning implies the
presence of a phase transition, but does not predict a critical value of the
coupling.

In this note, we continue the line of [4], and demonstrate that GEP ob-
tained under the light front quantization for φ4

1+1 coincides with the one
obtained under the equal time quantization.

Let us recall the derivation of GEP for φ4
1+1 in equal time quantization.

The derivation begins with the expression for the Hamiltonian density,

H(x) =
1

2
π2(x) +

m2

2
φ2(x) +

g

4
φ4(x). (1)

Here π(x) and φ(x) are the canonical variables. Next we decompose π and
φ:

φ(x) = φ0 +

∫

dk
√

4πω(k)

[

a(k)e−ikx + a†(k)eikx
]

, (2)

π(x) =

∫

dk

i
√

4π

√

ω(k)
[

a(k)e−ikx − a†(k)eikx
]

. (3)

Here φ0 is a constant, and ω(k) is an even function of k. Regardless of the
value of φ0 and behavior of ω(k), canonical commutation relation between φ
and π implies the canonical commutator [a(l), a†(k)] = δ(l − k).

Next step is to compute the expectation of H with respect to the vacuum
annihilated by a(k):

< H(x) > =

∫

dk

8π

(

ω(k) +
m2

ω(k)

)

+ 3g
[

∫

dk

8πω(k)

]2

+ 3gφ2

0

∫

dk

8πω(k)
+

m2

2
φ2

0 +
g

4
φ4

0. (4)

We now seek for ω(k) that would minimize the above vacuum expectation
at fixed φ0. Requiring variation of the expectation with respect to ω(k) to
vanish, we obtain the equation for ω(k):

ω2(k) = m2 + k2 + 3g
(

φ2

0 +

∫

dk

4πω(k)

)

. (5)
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GEP is the above expectation of the Hamiltonian density taken at the solu-
tion to Eq. (5). It is a function of φ2

0 ≡ R (the variable R is introduced for
later convenience). We denote this function V (R).

To get rid of an (infinite) constant, let us consider the derivative ∂V (R)/∂R,

∂V (R)

∂R
=

m2

2
+ 3g

∫

dk

8πω(k)
+

g

2
R (6)

(to obtain this, one should notice that due to Eq. (5) the dependence of ω on
R can be ignored in the derivation of the rhs). The value of this derivative
at R = 0 equals by definition half of the renormalized mass squared:

m2

r = m2 + 3g

∫

dk

4πω̄(k)
, (7)

where ω̄ is ω at R = 0.
We now express Eqs. (5) and (6) in terms of mr (the aim is to get rid of

the ultraviolet divergences):

ω2(k) = µ2(R) + k2, (8)

∂V (R)

∂R
=

µ2(R)

2
− gR, (9)

µ2(R) ≡ m2

r + 3g
(

∫

dk

4π

[ 1

ω(k)
− 1

ω̄(k)

]

+ R
)

. (10)

In the last line we introduced a “mass” µ(R). It is a function of R, and
coincides with mr at R = 0. Performing the integration in k explicitly in the
definition of µ(R) (we can do it because of the simple dependence of ω and
ω̄ on k), we obtain the equation for µ(R):

µ2(R) = 1 − 3g

4π
log µ2(R) + 3gR. (11)

Here and from now on we measure all the dimensionfull quantities in the
units where mr = 1. The last equation implies that µ2(R) is a growing
function of positive R; its growth starts from the value µ2(R = 0) = 1.

Finally, we can integrate the derivative of V in R to obtain the explicit
expression for V (R):

V (R) = −gR2

2
+

µ2(R) − 1

6g

[µ2(R) − 1

2
+ 1 +

6g

8π

]

. (12)
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The last two equations determine V (R) unambiguously in accord with [1].
For properties of this V (R), see [1].

Let us now repeat the above derivation for the light front quantization.
Specifically, we use the scheme suggested in [4]. In this paper, a regular-
ization was introduced in the Lagrangian of the theory, and Hamiltonian
quantization was applied to the regularized theory with the initial conditions
set at a fixed value of the light front time x+ = (x0 + x1)/

√
2. The regu-

larization involves two parameters, the dimensionless parameter ε, and the
mass parameter M . The regularization is removed when ε vanishes and M
goes to infinity. The resulting Hamiltonian density is

Hlf (x) =
1

2
p2(x) +

ε

2
φ2

−(x) +
m2

2
φ2(x) +

g

4
φ2(x). (13)

Here p(x) ≡ (π(x) − φ(x))/
√

ε − 4∂2/M2, and φ− ≡ ∂φ. The derivative is

in x− ≡ (x0 − x1)/
√

2. As before, π and φ are the canonical variables. The
variable x is now x− (for the equal time quantization, x was identical to x1).

This Hamiltonian is quite different from the one appearing in equal time
quantization (see Eq. (1)). For example, the kinetic term involving p2(x)
is formally divergent when the regularization is removed at fixed canonical
variables. We find it to be a remarkable fact that GEP implied by this Hamil-
tonian coincides with the standard one of Eq. (12) after the regularization
is removed.

Repeating literally the above derivation of GEP starting from Eq. (13)
for the Hamiltonian, one observes that the only modification of Eqs. (8)–(10)
implied by switching over from the Hamiltonian (1) to the Hamiltonian (13)
takes place in the equation expressing ω in terms of momentum and mass.
For the light front Hamiltonian the expression is as follows:

ω2

lf(k) = k2 + (εk2 + µ2(R))(ε +
4k2

M2
). (14)

At first glance, the difference in the dependence of ωlf on k with respect to
the one taking place for the equal time quantization may cause a difference
in the equation for µ(R), and, consequently, may change the equal time
expression for GEP. But this is not the case. To see it, switch to the variable
klf = k/

√
ε in the integrals over k involved in Eq. (10), and neglect all the

terms formally disappearing in the limit ε → 0, M → ∞. After this, the
integral in klf involved in Eq. (10) becomes identical to the one appearing in
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equal time quantization. Therefore, the final expression for GEP (Eq. (12))
is reproduced in light front quantization.

We conclude with the following observations. First, under the light front
quantization GEP is formed by the modes of low momentum. Specifically,
the characteristic scale of the momenta in the integrals

∫

dk/ωlf(k) is of the
order

√
ε, and, in the limit of the regularization removed, the characteristic

momenta vanish. Second, negative momentum modes are as important for
forming GEP as the modes with positive momentum. As discussed in [4], the
modes with negative momenta correspond to tachyons under the light front
quantization. Thus, one cannot ignore tachyons in the computation of GEP.
This is in contrast to perturbative computations, where all the integrations
in momenta can be restricted to positive momenta, and, therefore, tachyons
can be ignored.
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