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Abstract

We study two-point correlation functions of spin operators in the
minimal models Mp,p′ perturbed by the field Φ13 using both the frame-
work of conformal perturbation theory [1] and the form-factor ap-
proach [2]. This article is a review of the results in [3].

1 Introduction

There are several reasons to study minimal models of CFT and their pertur-
bations.

1. Minimal models correspond to the fixed points of the Wilson RG in
two dimensions. They describe different types of critical behavior in
statistical mechanics and different types of UV behavior in QFT.

2. The minimal models dressed by the Liouville gravity are a very inter-
esting example of string theory.

3. Relevant perturbations of minimal models describe the neighborhood
of the critical point in statistical mechanics and correspond to super-
renormalizable models in QFT.

4. The minimal models and their Φ13 perturbations are exactly solvable.
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These models [4] have the infinite-dimensional conformal symmetry V ir ×
V ir, where V ir is the Virasoro algebra

[Ln, Lm] = (n − m)Ln+m +
c

12
(n3 − n)δn+m (1)

with c = 1− 6(p−q)2

pq
, where p and q are coprime positive integers. The algebra

of the local fields consists of a finite number of irreducible representations
of the conformal algebra, and the corresponding primary fields Φnm with
0 < n < p − 1 and 0 < m < q − 1 have the dimensions

∆nm =
(pm − pq)2 − (p − q)2

4pq
. (2)

All correlation functions in these theories are known and are expressed by
the Feigin–Fucks–Dotsenko–Fateev integral representation [5].

A. B. Zamolodchikov [6] considered the perturbed models Mpp
′ ,

App
′ = Mpp

′ + g

∫

φ(y) d2y, (3)

where φ = Φ13. Because the dimension 2∆13 is less than the dimension of the
space–time, this perturbation is relevant and describes the scaling neighbor-
hood of the critical point. The theory App

′ is renormalizable (more precisely,
superrenormalizable). This means that UV divergences in the correlation
functions, which are formally defined in the perturbed theory as

〈A0
1(x1) · · ·A

0
N (xN)〉

def
=

〈A0
1(x1)...A

0
N (xN) exp(−g

∫

φ(y)d2y〉CFT =

=

∞
∑

n=0

(−g)n

n!

∫

〈A0
1(x1) · · ·A

0
N (xN)φ(y1) · · ·φ(yn)〉CFTd2y1 · · ·d

2yn, (4)

can be deleted if the new basis of fields Aj is taken instead of the old one
A0
j . The renormalizable fields Aj are in one-to-one correspondence with the

fields from the nonperturbed model (they have the same notation without the
upper index 0) and are distinguished from them by adding a finite number
of counterterms. These counterterms are the fields A0

k with dimensions less
than the dimension of the field Aj; the coefficients before them depend on

2



the UV cutoff ε and are fixed by the requirement that correlation functions
should be finite. More precisely, this procedure fixes only the infinite part of
these counterterms

Aj(x) = A0
j(x) +

∑

k 6=j

ε2(∆k−∆j)Uk
j (g, ε)A0

k(x),

where Uk
j =

∑

N Uk
j (N)[gε2(1−∆)]N and the sum ranges N such that N(1 −

∆) < (∆j − ∆k). The simplest way to fix finite counterterms is executed
in the formula above: the diagonal coefficient should be taken equal to 1
and the finite parts of the coefficients before the other fields equal to 0. This
“minimal” procedure for fixing counterterms is equivalent to the requirement
that the renormalized fields be eigenvectors of the dilatation operator, i.e.,
the fields with definite scaling dimensions, and have the same UV asymptotic
behavior as the conformal one. As shown in [6], the models App

′ are integrable
massive models with factorizable scattering. Below, we mainly consider the
case of the perturbed minimal models (p, p

′
) = (2, 2n+1). It was shown in [7]

that the corresponding perturbed models have n distinct particles whose
scattering is diagonal.

Thus, both the UV and the on-shell properties are known in the models
A2,2n+1. A natural question arises: Can this information be used to compute
correlation functions? There are two procedures for evaluating correlation
functions:

1. The first is the short-distance expansion combining Conformal Per-
turbation Theory (CPT) [1] with knowledge of Vacuum Expectation
Values (VEV) of local fields in the perturbed theory [8], [12].

2. The second is the long-distance expansion based on representing the
correlation functions in the form of Spectral series and using the Form-
Factor Bootstrap Approach [2].

In the following sections, we briefly expose the main ideas of these two
approaches and compare them using the well-known g–m relation [9]

πg = −
(ξ + 1)2

(ξ − 1)(2ξ − 1)

(

γ(
3ξ

ξ + 1
)γ(

ξ

ξ + 1
)

)
1
2

m
4
ξ+1 . (5)
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Here and hereafter, the mass parameter m is related to the mass of the
lightest particle m1 by

m = m1

(

πγ(1 − ξ

2
)γ(1+ξ

2
)

8 sinπξ

)
1
2

,

γ(x) =
Γ(x)

Γ(1 − x)
,

and ξ = p

p
′−p

.

2 Conformal Perturbation Theory

As an example, we evaluate the two-point correlation function of the fields
Ψ(x), which denotes the local field Φ12. Although the correlation function
of the renormalized fields is free from UV divergences, they still have IR
divergences, which arise in each term in the perturbation series from the
integrals over yk. The IR cutoff R, which can be considered a radius of the
sphere in which our system is placed, should be introduced. If we computed
all the integrals and summed, then in the limit R → ∞, we would obtain
a finite expression that depends nonanalytically on the coupling constant g.
Because such a way is not usable, we use the CPT method [1] to evaluate
the correlation functions. We consider the operator product expansion in our
theory,

Am(x)Aa(0) =
∑

b

CAb
AmAa

(r)Ab(0) . (6)

The CPT idea is based on the hypothesis that the structure functions C l
km

are analytical in the coupling constant g if the basis in the space of fields
consists of renormalizable fields Aj with definite scaling dimensions. This
means that the structure functions are defined by series

C l
mk(x) = |x|2(∆l−∆m−∆k)

∞
∑

N=0

C l
mk(N)[g|x|2(1−∆)]N , (7)

which converge for sufficiently small x because ∆ < 1. This hypothesis
provide the way to evaluate C l

mk(x) by perturbation theory. Indeed, substi-
tuting (6) and (7) in the correlation functions

〈A0
p(∞)Am(x)Ak(0)〉R = 〈A0

p(∞)Am(x)Ak(0)e−g
∫

|y|<R
d2yφ(y)〉CFT (8)
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and expanding this expression in a perturbative series in the coupling con-
stant g, we obtain the triangle system of linear equations for the coeffi-
cients C l

mk(N). Taking the vacuum average of both sides of the OPE for
〈Ψ(x)Ψ(0)〉, we obtain the double series for the two-point correlation func-
tion:

〈Ψ(x)Ψ(0)〉 =
∑

l

C l
ψ,ψ(x)〈Al(0)〉 =

=
∑

l

∞
∑

N=0

|x|2(∆l−2∆ψ)C l
ψ,ψ(N)[g|x|2(1−∆)]N 〈Al(0)〉. (9)

Both sums in the right-hand side are finite. The first sum (internal) con-
verges, as mentioned above, at least for small |x|, when g|x|2(1−∆) < 1 is also
small because of the inequality ∆ < 1. The second sum (external) converges
because the dimensions ∆l are increasing. The convergence of these series
allows restricting ourself to a small number of terms in the region of small x.
The obtained expression depends on two types of data: on the coefficients
C l
mk(N) (the procedure for calculating them is described above) and on the

VEV 〈Al(0)〉. From counting dimensions, we have

〈Al(0)〉 = Ol(ξ)m
2∆l,

where the first factor Ol(ξ) is independent of the coupling constant g and
the second factor depends on g nonanalytically according to (5). Namely the
VEV contains all nonperturbative information in itself.

The VEV of the primary local fields in the perturbed minimal model
were evaluated in [12]. The Lukyanov and Zamolodchikov formula for the
VEV [12] can be written as

〈Φ1k〉 = (−1)k−1m2∆1kQ(1 − ξ(k − 1)) . (10)

The function Q(η) is defined in terms of the following exponent of an integral,
which is understood in the sense of analytic continuation from the region
where it converges:

Q(η) = exp

∫ ∞

0

dt

t

(

cosh(2t) sinh((η − 1)t) sinh((η + 1)t)

2 cosh(t) sinh(ξt) sinh((ξ + 1)t)

−
η2 − 1

2ξ(ξ + 1)
e−2(ξ+1)t

)

. (11)

5



The one-point VEV for the first nontrivial descendent operators are also
known in the analytic form [8],

〈L−2L̄−2Φ1k〉 = −(1 + ξ)4W(1 − ξ(k − 1))m4〈Φ1k〉 , (12)

where the function W(η) is

W(η) :=
1

ξ2(ξ + 1)2
γ(

1 + η + ξ

2
)γ(

η − ξ

2
)γ(

1 − η + ξ

2
)γ(−

η + ξ

2
) .

The integral in (11) can be evaluated explicitly in terms of gamma-functions
when the argument is rational [3].

3 Short-distance expansion

For simplicity, we restrict our attention to the case of the M2,7 perturbed
model (the M2,5 case was considered in [1]). Retaining only the first leading
terms, which were evaluated in [3], we obtain

〈Ψ(x)Ψ(0)〉 = CI
ΨΨ(r)〈I〉 + CΦ

ΨΨ(r)〈Φ(0)〉 + CΦ15
ΨΨ (r)〈Φ15〉

+ C
L−2L̄−2I

ΨΨ (r)〈L−2L̄−2I〉 + C
L−2L̄−2Φ
ΨΨ (r)〈L−2L̄−2Φ(0)〉 + · · · . (13)

Only zeroth-order terms in the structure functions C
L−2L̄−2I

ΨΨ (r) and C
L−2L̄−2Φ
ΨΨ (r)

should be retained and the structure functions CΦ15
ΨΨ (r) CI

ΨΨ(r) and CΦ
ΨΨ(r)

should be evaluated up to the first order to not dominate the accuracy re-
stricted by knowing only the VEV of the first descendants. For the first-order
corrections to the structure functions, we use the formula

C
K (1)
ΨΨ (r) := lim

R→∞

[

−g

∫

|y|<R

< ÃK(∞)Φ(y)Ψ(x)Ψ(0) >CFT d2y

+πg
∑

A

CA
ΨΨCK

ΦA

∆K − ∆A − ∆Φ + 1
R2(∆K−∆A−∆Φ+1)r2∆A−4∆Ψ

]

. (14)

Using FFDF formulas for the four-point correlation functions we can ob-
tain the following expressions for the first-order corrections to the structure
functions :

C
I(1)
ΨΨ (r) = g

(

γ( ξ

ξ+1
)

γ( 2ξ
ξ+1

)

γ( 2
ξ+1

)

γ(2−ξ
ξ+1

)

)
1
2 ∫

d2z|z|
2−2ξ
ξ+1 |1 − z|

2−2ξ
ξ+1 , (15)
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C
Φ15(1)
ΨΨ (r) = −g

γ( ξ

ξ+1
)γ( 2

ξ+1
)

(

γ( 3ξ
ξ+1

)γ( 4ξ
ξ+1

)γ(2−2ξ
ξ+1

)γ(2−3ξ
ξ+1

)
)

1
2

×

×

∫

d2z|z|
2ξ
ξ+1 |1 − z|

2ξ
ξ+1 , (16)

C
Φ(1)
ΨΨ (r) = −gr

ξ+4
ξ+1

γ( 2
ξ+1

)

γ2( 1
ξ+1

)
lim
ε→∞

×

×

∫

d2xd2y|x|−
2ξ
ξ+1 |1 − x|−

2ξ
ξ+1 |y|

2ξ
ξ+1

−2ε|1 − y|
2ξ
ξ+1

−2ε|x − y|−
4ξ
ξ+1 . (17)

In obtaining (17), we change the IR regularization via the system size R
to the analytical regularization inserting the factor |y|−2ε|1 − y|−2ε in the
integral and letting ε tend to 0 after afterward. The first two integrals are
evaluated using the formula

∫

d2 z |z|2p|z − 1|2q =
πγ(p + 1)γ(q + 1)

γ(p + q + 2)
. (18)

The third can be taken using the change of the variables x → x
x−y

y → x−1
x−y

.
We obtain the integral

∫

d2xd2y|x|−
2ξ
ξ+1 |y|−

2ξ
ξ+1 |1 − x|

2ξ
ξ+1 |1 − y|

2ξ
ξ+1 |x − y|

4ξ
ξ+1

−6,

which can be evaluated using the well-known formula [5], [11],
∫

d2xd2y|x|2a|y|2a|1 − x|2b|1 − y|2b|x − y|4c =

= 2π2γ(2c)

γ(c)

γ(1 + a)γ(1 + b)γ(1 + a + c)γ(1 + b + c)

γ(2 + a + b + c)γ(2 + a + b + 2c)
(19)

Collecting all together, we obtain

〈Ψ(r)Ψ(0)〉 = r
2−ξ
ξ+1 [A(r) − B(r)Q(1 − 2ξ) + D(r)Q(1 − 4ξ)] . (20)

The r-dependent functions A(r), B(r), and D(r) have the forms

A(r) = 1 −
ξ2

4(ξ + 3)2

γ2( ξ
2
)

γ2(1+ξ
2

)
(mr)4

−
(ξ + 1)2

(1 − ξ)(1 − 2ξ)

(

γ2( ξ

ξ+1
)γ5( 2

ξ+1
)γ( 3ξ

ξ+1
)

γ( 2ξ
ξ+1

)γ(2−ξ
ξ+1

)γ2( 4
ξ+1

)

)
1
2

(mr)
4
ξ+1 ,
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B(r) =







(

γ( ξ

ξ+1
)γ( 2

ξ+1
)

γ( 2ξ
ξ+1

)γ(2−ξ
ξ+1

)

)
1
2

×

×

[

1 +
(ξ + 1)2

(ξ − 1)2(3ξ + 1)2

γ(3ξ
2
)γ(1−3ξ

2
)

γ( ξ
2
)γ(1−ξ

2
)

(mr)4

]

+
ξ2(1 − ξ)3

4(ξ + 1)2(1 − 2ξ)

(

γ8(1−ξ
1+ξ

)γ9( ξ

ξ+1
)γ( 3ξ

ξ+1
)

γ2(2−2ξ
ξ+1

)

)
1
2

(mr)
4
ξ+1







(mr)
2(ξ−1)
ξ+1 ,

D(r) = −
ξ2(1 − ξ)

4(1 − 2ξ)(3ξ + 1)2

(

γ7( ξ

ξ+1
)γ4(1−ξ

ξ+1
)

γ( 4ξ
ξ+1

)γ(2−2ξ
ξ+1

)γ(2−3ξ
ξ+1

)

)
1
2

(mr)
8ξ
ξ+1 .

4 Long-distance expansion

As previously mentioned, the combination of the spectral decomposition to-
gether with form factor bootstrap approach is very useful for studying the
IR behavior of correlation functions. For example, for spin fields, the corre-
sponding spectral decomposition is

〈Ψ(x)Ψ(0)〉 =

∞
∑

n=0

1

n!

∑

{aj}

∫

dβ1 · · ·dβn
(2π)n

e−r
∑

j maj cosh βj×

× Fan···a1(βn, . . . , β1)Fa1···an(β1, . . . , βn), (21)

where we introduce the matrix elements of the local operators in the basis of
the asymptotic states

Fa1···an(β1, . . . , βn) = 〈0|Ψ(0)|β1, . . . , βn〉a1···an . (22)

Form factors (22) are defined in this approach as a set of functions satisfying
Smirnov’s axioms [2] (also see [10]). Here, we write only the final answer for
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the form factors of particle 1 of the primaries in the perturbed model [14],

〈0|Φ1k|0〉 = 〈Φ1k〉 ,

〈0|Φ1k|β〉 = i C
sin
(

(k − 1)πξ/2
)

sin(πξ)
〈Φ1k〉 ,

〈0|Φ1k|β2, β1〉 = i2C2
sin2

(

(k − 1)πξ/2
)

sin2(πξ)
R(β1 − β2) 〈Φ1k〉 ,

and so on. Here, the function R(β) determining the rapidity-dependent part
of the two-particle form factor is given explicitly as

R(β) = exp
{

4

∫ ∞

0

dt

t

sinh t sinh ξt sinh(ξ + 1)t

sinh2 2t
cosh 2(1 −

i

π
β)t

}

,

and the constant C is

C2 = 8 cos2(
πξ

2
) sin(

πξ

2
) exp

(

−

∫ πξ

0

dt

π

t

sin t

)

.

5 Conclusion

The results of numerical calculations for the model M2,7 perturbed by the
energy operator are shown in Fig. 1. In the UV expansion we retain the first
few terms (13),being restricted by knowledge of VEV of the first descendents.
In the IR expansion the form factors with no more than three particles are
taken into account.

The excellent matching of UV and IR expansions confirms the conjec-
tures on the particle spectra, exact S-matrix, and VEV. This also gives a
good approximation for the correlation functions at all scales. The program
described above can be extended to find correlation functions of other opera-
tors in perturbed models (descendent fields). To do this, the VEV and form
factors for these fields should be found. This problem is still unsolved.
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Figure 1: Correlation function of the two spin operators (in units m
8
7 ) in the

minimal model M2,7 perturbed by the field Φ13.
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