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Abstract

In the paper the approach to estimation of quality of planned ex-
periments is proposed. This approach is based on the analysis of
uncertainty, which will take place under the future hypotheses testing
about the existence of a new phenomenon in Nature (H0: new physics
is present in Nature versus H1: new physics is absent). The signal sig-
nificance is considered in terms of Type I and Type II errors. Approx-
imate formulae for calculation of signal significance in the language of
standard deviations are obtained. The probability of making a correct
decision in hypotheses testing is proposed as one of the estimators of
the quality of planned experiment. Also the possible measure of the
distinguishability of hypotheses is discussed. Incorporation of uncer-
tainties to signal significance and the probability of making a correct
decision in planned experiment is an topical problem. The proposed
estimators allow to take into account for systematics and statistical
uncertainties in determination of signal and background rates.
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1 Introduction

One of the common goals in the forthcoming experiments is the search for
new phenomena. In the forthcoming high energy physics experiments (LHC,
TEV22, NLC, ...) the main goal is the search for physics beyond the Standard
Model (supersymmetry, Z ′-, W ′-bosons, ...) and the Higgs boson discovery
as a final confirmation of the Standard Model. In estimation of the discovery
potential of the planned experiments (to be specific in this paper we shall
use as an example CMS experiment at LHC [1]) the background cross section
(the Standard Model cross section) is calculated and for the given integrated
luminosity L the average number of background events is nb = σ̇b·L. Suppose
the existence of a new physics leads to additional nonzero signal cross section
σ̇s with the same signature as for the background cross section that results in
the prediction of the additional average number of signal events 1 ns = σ̇s · L
for the integrated luminosity L.

The total average number of the events is < n >= ns +nb = (σ̇s + σ̇b) · L.
So, as a result of new physics existence, we expect an excess of the average
number of events. In real experiments the probability of the realization of n

events is described by Poisson distribution

f(n; µ) =
µn

n!
e−µ. (1)

Here µ =< n > is the average number of events. Remember that the Poisson
distribution f(n; µ) gives [2] the probability of finding exactly n events in the
given interval of (e.g. space and time) when the events occur independently
of one another at an average rate of µ per the given interval. For the Poisson
distribution the variance σ2 equals to µ. So, to estimate the probability of
the new physics discovery we have to compare the Poisson statistics with
µ = nb and µ = nb + ns. Usually, high energy physicists use the follow-
ing “significances” for testing the possibility to discover new physics in an
experiment:

(a) “significance” S1 =
ns√
nb

[1, 3],

1It should be noted that the existence of new physics can also lead to the decrease
of the cross section due to destructive interference or some nonlocal formfactors. In this
paper we consider the case when the new physics existence leads to additional positive
contribution to the background cross section. The consideration of the opposite case is
straightforward.
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(b) “significance” S2 =
ns√

ns + nb

[4],

(c) “significance” Sc12 = 2(
√

ns + nb −
√

nb) [5] (see, also, [6]).

A conventional claim is that for S1 (S2) ≥ 5 we shall discover new physics
(here, of course, the systematic uncertainties are ignored). For nb � ns

the significances S1 and S2 coincide (the search for Higgs boson through the
h → γγ signature). For the case when ns ∼ nb, S1 and S2 differ. Therefore,
a natural question arises: what is the correct definition for the significance
S1, S2 or anything else ?

It should be noted that there is a crucial difference between the planned
experiment and the real experiment. In the real experiment the total number
of events nobs is a given number (already has been measured) and we compare
it with nb when we test the validity of the standard physics. So, the number
of possible signal events is determined as ns = nobs − nb and it is compared
with the average number of background events nb. The fluctuation of the
background is σfb =

√
nb, therefore, we come to the S1 significance as the

measure of the distinction from the standard physics. In the conditions of
the planned experiment when we want to search for new physics, we know
only the average number of the background events and the average number
of the signal events, so we have to compare the Poisson distributions f(n; nb)
and f(n; ns +nb) to determine the probability to find new physics in planned
experiment.

In this paper we describe a method for estimation of the discovery po-
tential on new physics in planned experiments. We also estimate the in-
fluence of systematic uncertainties related to nonexact knowledge of signal
and background cross sections on the probability to discover new physics in
planned experiments. An account of such systematics is very essential in
the search for supersymmetry at LHC. We find that the more proper defini-
tion of the significance of 50% discovery probability in planned experiments

is Sc12 = 2(
√

ns + nb −
√

nb) in comparison with often used significances

S1 =
ns√
nb

and S2 =
ns√

ns + nb

, where ns and nb are the average numbers of

signal and background events. For 1− α > 0.5, i.e. for discovery probability
more than 50%, there is additional additive contribution −k(α) in formula
for the significance. Here α is a Type I error in hypotheses testing about
observability of new physics. We propose a method for taking into account
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statistical uncertainties caused by inexact determination the number of signal
and background events.

2 Estimators of quality of planned experiments

Let us consider a statistical hypothesis

H0: new physics is present in Nature

against an alternative hypothesis

H1: new physics is absent in Nature.

The value of uncertainty is defined by the probability to reject H0 when it is
true (Type I error)

α = P (reject H0|H0 is true)

and the probability to accept H0 when H1 is true (Type II error)

β = P (accept H0|H0 is false).

2.1 Signal significance

As it has been mentioned in the introduction the crucial difference between
planned experiment and real experiment is that in real experiment we know
the number of observed events, therefore we can compare the Standard Model
with experimental data directly, whereas in the case of planned experiment
we know only the average number of background events nb and the average
number of signal events (for the case when we have new physics in addition
to the Standard Model). Therefore in the case of planned experiment an
additional “input” parameter is the probability of the discovery. Suppose
we test two models: the Standard Model with the average number of events
µ = nb and the model with new physics and the average number of events
µ = ns + nb.

To discover new physics we have to require that the probability β(∆) of
the background fluctuations for n > n0(∆) is less than ∆, namely

β(∆) =
∞
∑

n=n0(∆)+1

f(n; nb) ≤ ∆ (2)

4



The probability 1 − α(∆) that the number of events in a model with new
physics will be bigger than n0(∆) is equal to

1 − α(∆) =
∞
∑

n=n0(∆)+1

f(n; ns + nb) (3)

It should be stressed that if ∆ is a given number then α(∆) is a function of
∆ or, vice versa, we can fix the value of α in Eq.3 then ∆ is a function of
α. The meaning of the probability of the discovery 1 − α is the probability
that in the case of new physics an experiment will measure the number of
events bigger than n0 such that the probability that the Standard Model can
reproduce such number of events is rather small (β).

In other words we choose the critical value n0 for hypotheses testing2

about observability of new physics requiring that Type II error β ≤ ∆. Then
we calculate the Type I error α and the probability of discovery (or the

probability of the evidence) 1 − α.
For fixed value of α and known values of ns, nb we can calculate β using

Eqs.2,3. In our numerical calculations we take α = 0.5 and 0.1. Consider
now the limiting case nb � 1 when Poisson distribution approaches Gaussian
distribution. Eqs.2,3 take the form

β ≈
∫

∞

n0

PG(x; nb, nb)dx (4)

1 − α ≈
∫

∞

n0

PG(x; ns + nb, ns + nb)dx (5)

Consider at first the most simple case when α = 0.5 (see Figs.1-2 for an
illustration). For α = 0.5 parameter n0 in Eq.5 is equal to n0 = ns + nb.
Eq.4 takes the form

β ≈
∫

∞

S1

PG(x; 0, 1)dx, (6)

where
S1 =

ns√
nb

(7)

The significance S1 is determined by Eq.7 and it is often used in experi-
ment proposals [1, 3].

2A simple statistical hypothesis H0 (new physics is present, i.e. µ = ns + nb) against
a simple alternative hypothesis H1 (new physics is absent, i.e. µ = nb) [2].
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Figure 1: The case nb � 1. Poisson distributions with parameters µ = 1000
and µ = 1064. Here 1 − α = 0.5 and β = 0.02275 (i.e. S1 = 2).

For 1−α > 0.5 (see Fig.3 for an illustration) the parameter n0 in Eq.4 is
equal to

n0 = ns + nb − k(α)
√

ns + nb, (8)

where k(α): k(0.5) = 0; k(0.25) = 0.66; k(0.1) = 1.28; k(0.05) = 1.64 (as an
example, Tab.31.1 [7]). We can define the effective significance s(α) (instead
of S1 in Eq.6), i.e. corrected significance S1, corresponding the discovery
probability 1 − α, as

s(α) =
ns√
nb

− k(α)

√

1 +
ns

nb

. (9)

So, we see that the asymptotic formula (Eq.7) for the significance s(α) is
valid only for 1 − α = 0.5.
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Figure 2: The case nb � 1. Dependences ns versus nb for S1 = 5, S1 = 3 and
S1 = 2 coincide with 5σ discovery, 3σ strong evidence, and 2σ weak evidence
curves, correspondingly. The probability of discovery 1 − α = 0.5.

As it has been shown in Ref. [8] the more proper of the significance in
planned experiments is Sc12. The generalization of this significance to the case
of 1 − α > 0.5 looks very attractive for approximate estimation of discovery
potential

s(α) = 2 · (
√

ns + nb −
√

nb) − k(α). (10)

The comparison of formulae (Eq.9,10) is shown in Fig.4.
It should be stressed that very often in the conditions of planned exper-

iment the average numbers of background and real events are not very big
and we have to solve Eqs.2,3 directly to construct 5σ discovery, 3σ strong

evidence and 2σ weak evidence curves. Our numerical results are presented
in Figs. (5 - 6).

As an example consider the search for standard Higgs boson with a mass
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Figure 3: The case nb � 1 and S1 = 2.72. Poisson distributions with
parameters µ = 1000 and µ = 1086. Here 1−α = 0.75 and β = 0.02275 (i.e.
effective s = 2).

mh = 110 GeV using the h → γγ decay mode at the CMS detector. For
total luminosity L = 3 · 104pb−1(2 · 104pb−1) one can find [1] that nb =

2893(1929), ns = 357(238), S1 =
ns√
nb

= 6.6(5.4). Using Eq.9 and Table

of the standard normal probability density function [2] we find that 1 −
α(∆dis) = 0.93(0.60). It means that for total luminosity L = 3 · 104pb−1(2 ·
104pb−1) the CMS experiment will discover at ≥ 5σ level standard Higgs
boson with a mass mh = 110 GeV with a probability 93(60) percents 3.

For the case when we are interested in estimation of the lower bound on

3In other words let us suppose that we have constructed 100 identical CMS detectors.
At ≥ 5σ level the Higgs boson will be discovered at 93(60) CMS detectors
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Figure 4: The estimation of effective significance s(α) for given β and 1 − α.

number ns of signal events (bound on new physics) we can use the equations

1 − α(∆) =
∞
∑

n=n0(∆)+1

f(n; nb + ns) (11)

β(∆) =
∞
∑

n=n0(∆)+1

f(n; nb) ≥ ∆ (12)

2.2 The probability of making a correct decision

Let us introduce the estimator

κ̂ =
α̂ + β̂

2
(13)
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of the uncertainty [5] κ = α + β, when testing H0 versus H1 with an equal-
tailed test. It is the probability of making an incorrect choice in favour of
one of the hypotheses in future hypothesis testing. Here α̂ and β̂ are the
estimators of possible Type I error (α) and Type II error (β) obtained by
direct calculations.

Suppose that the probability of observing n events in an experiment is
described by the function f(n; µ) with parameter µ, and that we know the
expected numbers of signal and background events (µs and µb respectively).

Let us specify what we mean by the probability of making a correct de-

cision [9] about the presence or absence of a new phenomenon in a planned
experiment. Let us define the criterion for the hypothesis choice and calcu-
late the probability of making a correct decision. This is possible, because we
construct the critical region in such a way that the probability of an incorrect
choice in favour of one of the hypotheses is independent of whether H0 or H1

is true. We consider two conditional distributions of probabilities

{

f0(n) = f(n; µs + µb),
f1(n) = f(n; µb)

(14)

We suppose that any prior suppositions about H0 and H1 can be included in
f0(n) and f1(n).

2.2.1 Equal-tailed test

After choosing a critical region in some way, we can estimate the Type I (α̂)
and Type II errors (β̂). In the case of applying the equal-tailed test [10]
(α̂ = β̂), their combination Eq.13 is the probability of making incorrect
choice in favour of one of the hypotheses [9].

In actuality we must estimate the random value κ = α + β = κ̂ + e,
where κ̂ is a constant and e is a stochastic term. α is the fraction of incorrect
decisions if H0 is true. Then β is absent because H1 is not realized in Nature.
Correspondingly, β is the fraction of incorrect decisions if H1 takes place;
then α is absent. If H0 is true, the Type I error equals α̂ and the error

of our estimator Eq.13 is ê = κ̂ − α̂ =
α̂ + β̂

2
− α̂ = − α̂ − β̂

2
. Similarly,

if H1 is true, the Type II error equals β̂ and the error of the estimator is

ê = κ̂ − β̂ =
α̂ + β̂

2
− β̂ =

α̂ − β̂

2
. Thus the stochastic term takes the
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values ± α̂ − β̂

2
. If we require α̂ = β̂, both errors of the estimation are equal

to 0 (κ̂ − α̂ = κ̂ − β̂ = 0). As a result the estimator Eq.13 gives the
probability of making an incorrect decision in future hypothesis testing.

Accordingly, 1 − κ̂ is the probability to make a correct choice with the
given critical value.

The advantages of this estimator are:

• in case of continuous distributions this probability is independent of
which hypothesis is chosen as H0, which is H1, and which is true,

• in case of discrete distributions the error ê can be taken into account,

• this estimator allows the comparison of planned experiments.

2.2.2 Equal probability test

The equal probability test [8] gives results close to the equal-tailed test in the
case of Poisson distributions, i.e. we can consider κ̂ under equal probability
test as an approximation of the probability of making incorrect decision.

Let again the probability of observing n events in an experiment be de-
scribed by a Poisson distribution with parameter µ.

Then the Type I and II errors can be written as:























α̂ =
nc
∑

i=0

f(i; µs + µb) =
nc
∑

i=0

f0(i),

β̂ = 1 −
nc
∑

i=0

f(i; µb) = 1 −
nc
∑

i=0

f1(i),

(15)

where nc is a critical value.
κ̂ has a minimum if we choose nc such that f0(nc) = f1(nc). (For the

discrete Poisson distribution, nc = largest integer i such that f0(i) ≤ f1(i)).
This follows directly from

κ̂ =
α̂ + β̂

2
=

1

2
(1 −

nc
∑

i=0

(f1(i) − f0(i))). (16)

The value of κ̂ decreases as i increases from 0 up to nc. As soon as f0(i) >

f1(i), the value of κ̂ increases. Thus κ̂ will have its minimal value when
applying the equal probability test, and
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nc = [
µs

ln(µs + µb) − ln(µb)
], (17)

where square brackets mean the integer part of a number.

2.2.3 On the signal significance

κ̂ plays the role of ∆ in the definition of the confidence level and, correspond-
ingly, of the significance S of an excess of signal events above background [11]
in planned experiments. In the case of Poisson distributions the definition of
significance as

κ̂ =
1√
2π

∫

∞

S12

e−
x
2

2 dx. (18)

leads to the formula [5, 8]

Sc12 = 2 · S12 = 2 · (√µs + µb −
√

µb). (19)

A factor two is needed to correspond with common practice. As shown
in [12] this approximation has good statistical properties as the significance
for Poisson distributions.

2.3 Distinguishability of hypotheses

The probability of making a correct decision in hypotheses testing has dis-
advantages to be a measure of the distinguishability of hypotheses, namely,

• the equal-tailed test gives non-minimal magnitudes of sum of Type I
and Type II errors [9, 13],

• the κ̂ mainly assumes values in [0,
1

2
] (the desirable region for proba-

bilistic measure is [0, 1] [14]),

• the equal-tailed test does not always give a single-valued critical region
for complicated distributions.
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2.3.1 The possible measure of the distinguishability of hypotheses

The value 4

1 − κ̃ = 1 − α̂ + β̂

2 − (α̂ + β̂)
, (21)

is devoid of these disadvantages if we use the equal probability test [15]
There are 3 possibilities.

a) Distributions f0(n) and f1(n) have no overlapping, hence, the distri-
butions are completely distinguishable and any result of the experiment will
give the correct choice between hypotheses, i.e. 1 − κ̃ = 1.

b) Distributions f0(n) and f1(n) coincide completely. It means, that it is
impossible to get a correct answer, i.e. f0(n) and f1(n) are not distinguish-
able, i.e. 1 − κ̃ = 0.

c) Distributions f0(n) and f1(n) do not coincide, but they have an overlap-
ping, i.e. κ̃ is the fraction of incorrect decisions under the equal probability

test. If in this case we hold the designation κ̂ =
α̂ + β̂

2
then

κ̃ =
κ̂

1 − κ̂
. (22)

2.3.2 The case of Poisson distributions

Let the probability of observing n events in an experiment be described by a
Poisson distribution with parameter µ. Then the Type I and II errors and,
correspondingly, the measure of the distinguishability of hypotheses can be
written as

4If we will use the geometric approach (let us the A is a set of possible realizations of
the result of the planned experiment if the hypothesis H0 takes place in Nature and the
B is a set of possible realizations of the result of the planned experiment if the hypothesis
H1 takes place) then we have the total number of the possibilities for decision equals to
A

⋃

B and the fraction of incorrect decisions will be

κ̃ =
A

⋂

B

A
⋃

B
=

α̂ + β̂

2 − (α̂ + β̂)
. (20)
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α̂ =
nc
∑

i=0

f(i; µs + µb) =
nc
∑

i=0

f0(i),

β̂ = 1 −
nc
∑

i=0

f(i; µb) = 1 −
nc
∑

i=0

f1(i),

1 − κ̃ = 1 − α̂ + β̂

2 − (α̂ + β̂)
,

(23)

with critical value nc determined by Eq.17 (see, Fig.7).
Notice, that this critical value in case of the process of Poisson with

parameter µ · t practically conserves the linearity with respect to time

nc · t = [
µs · t

ln(µs + µb) − ln(µb)
]. (24)

3 Incorporating systematic uncertainties

There is considered the systematics and statistical uncertainties in planned
experiments due to imperfect knowledge of the background and signal cross
sections.

In Ref. [16] (R.D. Cousins and V.L. Highland) the systematic uncertainty
is the uncertainty in the sensitivity factor (inefficiencies in the registration
and/or the reconstruction of events and so on). This uncertainty has statis-
tical properties which can be measured or estimated in real or Monte Carlo
experiment. The systematic effects in Ref. [17] (G. D’Agostini and M. Raso)
as supposed has stochastic behavior too and these effects are taken into ac-
count in frame of Bayesian approach. In review [19] P. Sinervo has motivated
three classes of systematic uncertainties in measurements. Class 1 system-
atics are uncertainties that can be constrained by ancillary measurements
and can therefore be treated as statistical uncertainties. Class 2 systematics
arised from model assumption in the measurement of from poorly understood
features of the data or analysis technique that introduce a potential bias in
the experimental outcome. Class 3 systematics arise from uncertainties in
the underlying theoretical paradigm used to make inferences using the data.
This classification can be applied in planning of experiments too. Below we
consider the way to take into account for statistical errors in determination
of values nb and ns [18] (class 1 systematics) and the systematic uncertainty
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Figure 5: The 5σ discovery curve and
dependences ns versus nb for S1 = 5,
S2 = 5, 2 · S12 = 5. Here 1 − α = 0.5
and β = 2.85 · 10−7.

Figure 6: Dependences ns versus nb for
1 − α = 0.9 and for different values of
β.

Figure 7: Equal probability test for
the case nb = 11 and ns = 10.61 gives
the critical value nc = 16 and, cor-
respondingly, the probability of incor-
rect decision κ̂ = 0.09 and the mea-
sure of distinguishability of hypotheses
κ̃ = 0.1.
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which has theoretical origin without any statistical properties [5, 18] (class 3
systematics) in frame of frequentist approach.

Let the values ns = n̂s and nb = n̂b be known from Monte Carlo calcula-
tions. In this case they are random variables. These values can be considered
as estimators of unknown parameters. Consequently, the values nc, α and
β are also random variables. It means that 1 − κ̃ is the estimator of the
distinguishability of hypotheses. Let us consider how the uncertainties in
the knowledge of ns and nb influence on the measure of distinguishability of
hypotheses 1 − κ̃. The cases of the signal significance and the probability of
making a correct decision are considered in Refs. [18] and [9], correspondingly.

Suppose, as before, that the streams of signal and background events are
Poisson’s.

3.1 The uncertainty in determination of the signal and

background rates

As shown in ref. [20] the Gamma-distribution Γ1,n+1 (with probability density

gn(µ) =
µn

n!
e−µ, µ > 0, n > −1) (25)

and the Poisson distribution with parameter µ are statistically dual distri-
butions. The identity [21] (see, also, [22, 11, 23])

∞
∑

k=n+1

f(k; µ1) +
∫ µ2

µ1

gn(µ)dµ +
n

∑

k=0

f(k; µ2) = 1 (26)

for any µ1 ≥ 0 and µ2 ≥ 0 is true for these distributions. It allows esti-
mate the parameter µ of the Poisson distribution by the measurement of
the random variable n, because the parameter value of this distribution (in
case of single observation of the number of events) is described by Gamma-
distribution Γ1,1+n with mean, mode, and variance n + 1, n, and n + 1,
respectively [21, 18]. This statement was checked by Monte Carlo experi-
ment [24].

The identity Eq.26 shows that conditional distribution of the probability
of true value of parameter of Poisson distribution is a Gamma-distribution
Γ1,1+n on condition that the measured value of the number of events is equal
to n. As a result we can mix Bayesian and frequentist probabilities in frame
of frequentist approach.
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It allows to transform the probability distributions f(i; ns + nb) and
f(i; nb) accordingly to calculate the measure of distinguishability of hypothe-
ses















































α̂ =
∫

∞

0
gns+nb

(µ)
nc
∑

i=0

f(i; µ)dµ =
nc
∑

i=0

Ci
ns+nb+i

2ns+nb+i+1
,

β̂ = 1 −
∫

∞

0
gnb

(µ)
nc
∑

i=0

f(i; µ)dµ = 1 −
nc
∑

i=0

Ci
nb+i

2nb+i+1
,

1 − κ̃ = 1 − α̂ + β̂

2 − (α̂ + β̂)
.

(27)

Here the critical value nc under the future hypotheses testing about the
observability is chosen in accordance with test of equal probability and C i

N

is
N !

i!(N − i)!
. Also we suppose that the Monte Carlo luminosity is exactly

the same as the data luminosity later in the experiment.
The Poisson distributed random values have a property: if ξi ∼ Pois(µi), i =

1, 2, . . . , m then
m

∑

i=1

ξi ∼ Pois(
m

∑

i=1

µi). It means that if we have m observa-

tions n̂1, n̂2, . . ., n̂m of the same random value ξ ∼ Pois(µ), we can consider

these observations as one observation
m

∑

i=1

n̂i of the Poisson distributed random

value with parameter m ·µ. According to Eq.26 the probability of true value
of parameter of this Poisson distribution has probability density of Gamma
distribution Γ1,1+

∑

m

i=1
n̂i

. Using the scale parameter m one can show that the

probability of true value of parameter of Poisson distribution in the case of
m observations of the random value ξ ∼ Pois(µ) has probability density of
Gamma distribution Γm,1+

∑

m

i=1
n̂i

5, i.e.

G(
∑

n̂i, m, µ) = g(
∑

m

i=1
n̂i)

(m, µ) (28)

=
m(1+

∑

m

i=1
n̂i)

(
∑m

i=1 n̂i)!
e−mµµ(

∑

m

i=1
n̂i).

Let us assume that the integrated luminosity of planned experiment is

5The probability density of the Γa,n+1-distribution (in our notation) is gn(a, µ) =
an+1

Γ(n + 1)
e−aµµn, where a is a scale parameter and n + 1 is a shape parameter.
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L and the integrated luminosity of Monte Carlo data is m · L. For in-
stance, we can divide the Monte Carlo data into m parts with luminosity
corresponding to the planned experiment. The result of Monte Carlo exper-
iment in this case looks as set of m pairs of numbers ( (nb)i, (nb)i + (ns)i ),
where (nb)i and (ns)i are the numbers of background and signal events ob-

served in each part of Monte Carlo data. Let us denote Nb =
m

∑

i=1

(nb)i and

Ns+b =
m

∑

i=1

((ns)i + (nb)i). Correspondingly (see page 98, [11]),























α̂ =
∫

∞

0
G(Nb+s, m, µ)

nc
∑

i=0

f(i; µ)dµ =
nc
∑

i=0

Ci
Ns+b+i

m1+Ns+b

(m + 1)1+Ns+b+i
,

β̂ = 1 −
∫

∞

0
G(Nb, m, µ)

nc
∑

i=0

f(i; µ)dµ = 1 −
nc
∑

i=0

Ci
Nb+i

m1+Nb

(m + 1)1+Nb+i
.

(29)
As a result, we have a generalized system of equations for the case of different
luminosity in planned data and Monte Carlo data to calculate the measure

of distinguishability of hypotheses 1− κ̃ = 1− α̂ + β̂

2 − (α̂ + β̂)
. The set of values

Ci
N+i

m1+N

(m + 1)N+i+1
, i = 0, 1, . . . is a negative binomial (Pascal) distribution

with real parameters N + 1 and
1

m + 1
, mean value

1 + N

m
and variance

(1 + m)(1 + N)

m2
.

3.2 Systematics of theoretical origin

We consider here forthcoming experiments to search for new physics. In
this case we must take into account the systematic uncertainty which have
theoretical origin without any statistical properties. For example, two loop
corrections for most reactions at present are not known. It means that we
can only estimate the scale of influence of background uncertainty on the
observability of signal, i.e. we can point the admissible level of uncertainty
in theoretical calculations for given experiment proposal. In principle, it is
“reproducible inaccuracy introduced by faulty technique” [25] and according
to [26] it contains the sense of “incompetence”.
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Suppose uncertainty in the calculation of exact background cross section
is determined by parameter δ, i.e. the exact cross section lies in the interval
(σ̇b, σ̇b(1 + δ)) and the exact value of average number of background events
lies in the interval (nb, nb(1 + δ)). Let us suppose nb � ns. In this instance
the discovery potential is the most sensitive to the systematic uncertainties.
As we know nothing about possible values of average number of background
events, we consider the worst case [5]. Taking into account Eqs.23 we have
the formulae 6
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0 45 90 135 180

Figure 8: Discovery probability versus ns with and without account for sta-
tistical uncertainty in determination of ns and nb. The case ns = nb. The
curves are constructed under condition β = 2.85 · 10−7.

6Eqs.30 realize the worst case when the background cross section σ̇b(1 + δ) is the
maximal one, but we think that both the signal and the background cross sections are
minimal. Also, we suppose that nb(1 + δ) < ns + nb.
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α̂ =
nc
∑

i=0

f(i; nb + ns)

β̂ = 1 −
nc
∑

i=0

f(i; nb(1 + δ))

1 − κ̃ = 1 − α̂ + β̂

2 − (α̂ + β̂)
,

(30)

where nc is

nc = [
ns − nb · δ

ln(ns + nb) − ln(nb · (1 + δ))
]. (31)
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Figure 9: Discovery probability versus ns for different values of systematic
uncertainty δ for the case ns = nb. The curves are constructed under condi-
tion β = 2.85 · 10−7.
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4 Conclusions

In this paper we have considered several estimators of the quality of planned
experiments. These estimators allow to compare the discovery potential of
different experiment proposals. We estimate the influence of statistical un-
certainty in determination of mean numbers of signal and background events
and propose a possible way to take into account effects of theoretical origin
systematics. The scale of this influence to the discovery probability is shown
in Fig.11 for statistical uncertainty and in Fig.12 for systematics.
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