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Outline:

• What is the pion distribution amplitude ϕπ(x)?

• Nonperturbative part: How to obtain ϕπ(x) from QCD sum rules;

• Perturbative part: NLO light-cone sum rules ⇒ CLEO experiment on
F γγ∗π(Q2) ⇒ constraints on ϕπ(x) and λ2

q;

• Perturbative addition: Diffractive dijet production (E791 data);

• Perturbative addition: Pion electromagnetic form factor (CEBAF data);

• Conclusions.

The main object of this talk is the pion distribution amplitude
(DA), which can be defined through the matrix element of a nonlocal axial

∗Talk is based on results obtained in collaboration with S. Mikhailov, K. Passek-
Kumerički, W. Schroers, N. G. Stefanis
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current on the light cone

〈0 | d̄(z)γµγ5E(z, 0)u(0) | π(P )〉
∣

∣

∣

z2=0
=

= ifπPµ

∫ 1

0

dx eix(zP ) ϕπ(x, µ2) , (1)

which is explicitly gauge-invariant due to the presence of the Fock–Schwinger
connector E(z, 0) = Peig

∫

z

0
Aµ(τ)dτµ

. The physical meaning of this object is
quite transparent:
It is the amplitude for the transi-
tion of the physical pion π(P ) to a
pair of valence quarks u and d, sep-
arated at light-cone (see graphical
image to the right), with momen-
tum fractions xP and x̄P , corre-
spondingly (here x̄ ≡ 1 − x).
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This object inevitably appears in applying perturbative QCD to hard pro-
cesses with pions in the initial or the final state as a result of QCD factor-
ization theorems [1, 2, 3] and it includes nonperturbative information about
the physical pion. It has the following properties:

• normalized to unity
∫ 1

0
dx ϕπ(x, µ2) = 1;

• x � x̄ symmetric: ϕπ(x, µ2) = ϕπ(x̄, µ2);

• obeys the Efremov&Radyushkin–Brodsky&Lepage (ER-BL) evolution
equation [2, 3] with respect to µ2;

• in the 1-loop approximation ϕπ(x; µ2 → ∞) = ϕas(x) = 6x(1 − x).

It is convenient to represent the pion DA as an expansion in terms of
Gegenbauer polynomials C

3/2
n (2x−1), being the 1-loop eigenfunctions of the

ER-BL kernel:

ϕπ(x; µ2) = ϕas(x)
[

1 + a2(µ
2)C

3/2
2 (2x − 1) + a4(µ

2)C
3/2
4 (2x − 1) + ...

]

.(2)

That means to transfer all the µ2-dependence of the pion DA into the Gegen-
bauer coefficients {a2(µ

2), a4(µ
2), . . .}. This scheme can be effectively applied

at the 2-loop level as well [4, 5].
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In order to obtain the pion DA in the theory, one is obliged to use
some nonperturbative approach. Historically, the first nontrivial model has
been constructed by Chernyak and Zhitnitsky (CZ) [6] using the standard
QCD sum rule approach and estimating the first two moments of the pion
DA: 〈ξ2〉π and 〈ξ4〉π. After that, Mikhailov and Radyushkin realized that
in doing so CZ highly overestimated these moments and suggested to use
instead the non-local condensate (NLC) approach [7]. We have used the
NLC QCD sum rules and obtained the first five moments of the pion DA,
〈ξ2N〉π with N = 1, ..., 5. Just for illustration, we present here the simplest
scalar condensate of the used NLC model:

〈q̄(0)q(z)〉 = 〈q̄(0)q(0)〉 e−|z2|λ2
q
/8 . (3)

This model is determined by a single scale parameter λ2
q = 〈k2〉 characterizing

the average momentum of quarks in the QCD vacuum. It has been estimated
in QCD SRs and on the lattice:

λ2
q =







0.4 ± 0.1 GeV2 [ QCD SRs [8] ]
0.5 ± 0.05 GeV2 [ QCD SRs [9] ]
≈ 0.4 − 0.5 GeV2 [ Lattice [10, 11] ]

(4)

NLC sum rules for the pion DA produce [12] a “bunch” of self-consistent
2-parameter models at µ2 ' 1 GeV2:

ϕπ(x) = ϕas(x)
[

1 + a2C
3/2
2 (2x − 1) + a4C

3/2
4 (2x − 1)

]

. (5)

For the most favorite value of the vacuum nonlocality parameter λ2
q = 0.4

GeV2 we have the bunch of pion DAs presented in Fig. 1a. By self-consistency
we mean that the value of the inverse moment for the whole bunch 〈x−1〉bunch

π =
3.17± 0.10 is in agreement with the independent estimation from the special
sum rule, 〈x−1〉SR

π = 3.30 ± 0.30, see Fig. 1b.
We also extract the corresponding bunches for two other values of λ2

q =
0.5 GeV2 and λ2

q = 0.6 GeV2, and show the results as allowed regions in the
(a2, a4)-plane in Fig. 2a.

NLO light-cone sum rules (LCSR) and the CLEO data on Fγγ∗π(Q2)
allow one to obtain constraints on ϕπ(x) directly from the experimental data.
A natural question arises: Why does one need to use LCSRs? The answer
is that for Q2 � m2

ρ, q2 � m2
ρ pQCD factorization is valid only in lead-

ing twist but higher twists are also of importance [13]. The reason is quite
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evident: if q2 → 0 one needs to take into account the interaction of a real
photon at long distances of order of O(1/

√

q2). To account for long-distance
effects in perturbative QCD, one needs to introduce a light-cone DA of a
real photon. In the absence of reliable information about the photon DA,
Khodjamirian [14] suggested to use the LCSR approach, which effectively
accounts for long-distances effects of a real photon, using the quark-hadron
duality in the vector channel and a dispersion relation in q2:

Fγγ∗π(Q2, 0) =
1

π

∫ s0

0

ImFPT
γ∗γ∗π(Q2,−s)

m2
ρ

exp

[

m2
ρ − s

M2

]

ds+

+
1

π

∫ ∞

s0

ImFPT
γ∗γ∗π(Q2,−s)

s
ds , (6)

with s0 ' 1.5 GeV2 – effective threshold in vector channel, M 2 – Borel
parameter (0.5 − 0.9 GeV2). We revised the NLO LCSR approach of [15] in
performing the CLEO data analysis along the following lines [16]:

• An accurate NLO evolution for both ϕ(x, Q2
exp) and αs(Q

2
exp), taking

into account heavy quark thresholds.

• The relation between the “nonlocality” scale and the the twist-4 mag-
nitude δ2

Tw-4 ≈ λ2
q/2 was used to re-estimate δ2

Tw-4 = 0.19 ± 0.02 at
λ2

q = 0.4 GeV2.

• Constraints on 〈x−1〉π from the CLEO data.

As a result, we have obtained reasonable agreement of our bunch with the
CLEO data for λ2

q = 0.4 GeV2, see Fig. 2b (with (◆) = asymptotic DA, (✖)
= BMS model, (■) = CZ DA, and (✚) corresponds to the best-fit point).

In order to make our conclusions more valuable, we have adopted a 20%
uncertainty in the magnitude of the twist-4 contribution, δ2

Tw-4 = 0.19 ±
0.04 GeV2, and produced new 1σ-, 2σ- and 3σ-contours dictated by the
CLEO data [17], see Fig. 3a in parallel with available 2-Gegenbauer models:
asymptotic DA, BMS model, CZ DA (they are shown in the same manner
as in Fig. 2b), three instanton-based models, viz., (✩) [18], ▲ [19], and (✦)
(using in this latter case mq = 325 MeV, n = 2, and Λ = 1 GeV) [20],
and a recent transverse lattice result (▼) [21]. We see that even with a 20%
uncertainty in the twist-4, the CZ DA is excluded at least at the 4σ-level,

4



whereas the asymptotic DA – at the 3σ-level. Our bunch is mainly inside
the 1σ-region and other nonperturbative models are near the 3σ-boundary.

We also plot the CLEO data in the plane (X, Y ) with X = a2 − a4

and Y = a2 + a4 = 〈x−1〉π/3 − 1, where the Gegenbauer coefficients a2 and
a4 refer to the NLC sum-rule scale µ2 ' 1 GeV2. The result is shown in
Fig. 3b, where the comparison of the CLEO data constraints directly with
the model-independent bound 1

3
〈x−1〉SR

π − 1 = 0.1± 0.1 from the NLC QCD
sum rule (shaded strip in figure) is done. Again we see a good agreement
of a theoretical “tool” of different origin with the CLEO data. Here, we
should also mention other estimations of the pion DA inverse moment. Bij-
nens&Khodjamirian produced an estimate 1

3
〈x−1〉π − 1 = 0.24 ± 0.16 using

data on the pion electromagnetic form factor in the LCSR approach [22],
whereas Ruiz Arriola&Broniowski obtained in their model of the pion DA
with an infinite number of Gegenbauer harmonics the result 1

3
〈x−1〉π − 1 =

0.25 ± 0.1 [23].
To finish our discussion about the CLEO data constraints in the NLO

LCSR approach, we show in Fig. 4a the plot of Q2Fγ∗γ→π(Q2) for our bunch
(shaded strip), CZ DA (upper dashed line), asymptotic DA (lower dashed
line), and two instanton-based models (dotted [18] and dash-dotted [27] lines)
in comparison with the CELLO and the CLEO data. We see that the BMS
bunch describes rather well all data for Q2 & 1.5 GeV2.

Diffractive Dijet Production: What can add the E791 data to our
analysis? The diffractive dijet production in π + A collisions has been sug-
gested as a tool to extract the profile of the pion DA by Frankfurt et al. in
1993 [28]. They argued that the jet distribution with respect to the longitu-
dinal momentum fraction has to follow the quark momentum distribution in
the pion and hence provides a direct measurement of the pion DA. As it was
shown just recently in [29] (see also [30]), beyond the leading logarithms in
energy this proportionality does not hold. Braun et al. found that the longi-
tudinal momentum fraction distribution of the jets for the non-factorizable
contribution turns out to be the same as for the factorizable contribution
with the asymptotic pion distribution amplitude. We have used this convo-
lution approach of Braun et al. to estimate the distribution of jets in this
experiment for our bunch of pion DAs in comparison with the asymptotic
and the CZ DAs [17]. Results are shown in Fig. 4b. It is interesting to note
that the corresponding χ2 values are: as – 12.56; CZ – 14.15; BMS – 10.96
(accounting for 18 data points). The main conclusion from this compari-
son: all three DAs are compatible with the E791 data. Hence, this
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experiment cannot serve as a safe profile indicator.
Let us say a few words about similarities and differences between the CZ

and BMS DAs. Both are two-humped, but the CZ DA is strongly end-point
enhanced, whereas the BMS DA is end-point suppressed! And the reason for
this behaviour is physically evident: nonlocal quark condensate reduces pion
DA in the small x region and enhances in the vicinity of the point x ' 0.2.
In order to keep the norm equal to unity, it is forced to have in the central
region some reduction as well.

Pion electromagnetic form factor: How well is the BMS bunch in
comparison with the JLab data on the pion form factor? We have calculated
the pion form factor in analytic NLO pQCD [31]

Fπ(Q2; µ2
R) = F LD

π (Q2) + F Fact-WI
π (Q2; µ2

R) , (7)

with taking into account the soft part F LD
π (Q2) via the local duality approach

and the factorized contribution

F Fact-WI
π (Q2; µ2

R) =

(

Q2

2s2-loop
0 + Q2

)2

F Fact
π (Q2; µ2

R) (8)

has been corrected via a power-behaved pre-factor (with s2-loop
0 ≈ 0.6 GeV2)

in order to respect the Ward identity at Q2 = 0 and preserve its high-Q2

asymptotics. In our analysis F Fact
π (Q2; µ2

R) has been computed to NLO [32,
33], using Analytic Perturbation Theory [34, 35, 36] and trading the run-
ning coupling and its powers for analytic expressions in a non-power series
expansion, i.e.,

[

F Fact
π (Q2; µ2

R)
]

MaxAn
= ᾱ(2)

s (µ2
R)FLO

π (Q2)+

+
1

π
A

(2)
2 (µ2

R)FNLO
π (Q2; µ2

R) , (9)

with ᾱ
(2)
s and A

(2)
2 (µ2

R) being the 2-loop analytic images of αs(Q
2) and (αs(Q

2))
2
,

correspondingly (see [31] for more details), whereas FLO
π (Q2) and FNLO

π (Q2; µ2
R)

are the LO and NLO parts of the factorized form factor, respectively. The re-
sult of this analysis is presented in Fig. 6, where we show Fπ(Q2) for the BMS
“bunch” and using the “Maximally Analytic” procedure, which improves the
previously introduced [36] “Naive Analytic” one. The new procedure with
the analytic running coupling and analytic versions of its powers gives us
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practical independence of the scheme/scale setting (see Fig. 6a and the fig-
ure caption for details) and provides results in a rather good agreement with
the experimental data [38, 37]. We see that the form-factor predictions are
only slightly larger than those resulting when using the asymptotic DA (see
Fig. 6b).

Conclusions.

• The QCD sum rule method with NLC for the pion DA gives us admis-
sible sets (bunches) of DAs for each λq value.

• The NLO LCSR method produces new constraints on the pion DA
parameters (a2, a4) in conjunction with the CLEO data.

• Comparing NLC sum-rule results with the new CLEO constraints al-
lows us to fix the value of QCD vacuum nonlocality λ2

q = 0.4 GeV2.

• The corresponding bunch of pion DAs agrees well with the E791 data
on diffractive dijet production and with the JLab F(pi) data on the
pion electromagnetic form factor.

• Analytic perturbation theory with non-power NLO for the pion form
factor diminishes scale-setting ambiguities already at NLO level, ren-
dering still higher-order corrections virtually superfluous.

Acknowledgments: I wish to thank Prof. Klaus Goeke for the warm
hospitality at Bochum University, where the major part of this investiga-
tion was carried out. This work was supported in part by the Deutsche
Forschungsgemeinschaft (Projects 436 KRO 113/6/0-1 and 436 RUS 113/752/0-
1), the Heisenberg–Landau Programme, the COSY Forschungsprojekt Jülich/Bochum,
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Figure 1: (a) The bunch of pion DAs extracted from NLC QCD sum rules. Parameters
of the bold-faced curve are ab.f.

2 = +0.188 and ab.f.
4 = −0.130. (b) The results for the

inverse moment 〈x−1〉π as a function of the Borel parameter M 2 obtained using a special
model-independent sum rule. The shaded area corresponds to the 10%-variation of the
threshold parameter s0. Dashed straight lines show the allowed window for 〈x−1〉SR

π .
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Figure 2: (a) The bunches of pion DAs extracted from NLC QCD sum rules in the
(a2, a4)-plane for three values of the nonlocality parameter λ2

q . (b) Comparison of the

NLC-bunch evolved to µ2 = 5.76 GeV2 with the CLEO data constraints for λ2
q = 0.4 GeV2.

The 1σ- and the 2σ-contours are shown in dashed and solid lines, correspondingly.
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Figure 3: (a) Comparison of the NLC-bunch evolved to µ2 = 5.76 GeV2 with the CLEO
data constraints for λ2

q = 0.4 GeV2. The 1σ-, 2σ- and 3σ-contours are shown as dashed,
solid and dash-dotted contours. For details see in the text. (b) Comparison of BMS,
CZ and asymptotic DAs at the QCD sum-rule scale µ2 ' 1 GeV2 with the CLEO data
constraints for λ2

q = 0.4 GeV2 in terms of rotated axes a2 − a4 and a2 + a4. The 1σ- and
2σ-contours are shown as dashed and solid lines.
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Figure 4: (a) γ∗γ → π Transition form factor in comparison with the CELLO (◆) [24]
and the CLEO (▲) [25] data. For details see in the text. (b) Comparison of the asymptotic
DA (solid line), CZ DA (dashed line), and the BMS “bunch” of pion DAs (strip) with the
E791 data (◆) [26].
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Figure 5: Comparison of the asymptotic (dotted line), the CZ (dashed line), and the
BMS DAs (solid line).
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Figure 6: Pion electromagnetic form factor in comparison with the JLab (◆) [37] and
Bebek et al. (▲) [38] data. (a) The solid line represents results obtained with µ2

R
= 1 GeV2,

the dashed line – with µ2

R
= Q2, the dotted line – with the BLM scale, and the dash-dotted

line — in the αV -scheme. (b) Predictions based on the BMS “bunch” of pion DAs (strip)
and the asymptotic DA (dashed lines). The green strip contains the NLC QCD sum-rule
uncertainties (due to the BMS bunch) and scale-setting ambiguities at the NLO level (in
the case of the asymptotic DA these ambiguities are represented by two dashed lines).
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