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1 Introduction

The main problem of primordial magnetic field generation is an inconsistency
of their values B and correlation lengths L0 obtained in different scenarios.
There are many ways how to generate small-scale random magnetic fields
with large values of Brms =

√
< B2 >, e.g. using some causal mechanisms

like bubble collisions at phase transitions, while the correlation length of
such magnetic fields evolved (via inverse cascade) during the expansion of
universe into large-scale magnetic fields turns out to be too small at present
time, L0 ∼ tens parsecs, to reach the size L0 ∼ 100 kps for galactic magnetic
field, or even more ( >∼ Mps) for extragalactic magnetic fields. The other way
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using the inflation scenario allows, vice versa, to get large-scale (a few Mps)
magnetic fields while their strength occurs too small for observable magnetic
fields.

We suggest a new mechanism [1] for amplification of large-scale mag-
netic fields in the hot plasma of early universe which is based on the parity

violation in weak interactions. Such large-scale (mean) magnetic field is orig-
inated from the small-scale ones generated before in phase transitions and we
explore how this field evolves during the cooling of universe in the presence
of powerful neutrino fluxes. The mechanism suggested in [1] can result in a
self-excitation of an (almost) uniform cosmological magnetic field that solves
the problem of a large-scale field seeding galactic magnetic fields, or surely
such mean field survives the recombination time. On the other hand, there
appears the remarkable property of the cosmological magnetic field B am-
plified through weak interactions: in addition to the usual axial vector part,
obeying the transformation B1 = PB1P

−1 under spatial inversion, it gets a
pure vector component violating parity B2 = −PB2P

−1 in the macroscopic
magnetohydrodynamics (MHD).

There remains a problem how to observe these ”wrong” magnetic fields
which are pure vectors like electric fields in QED. They are produced by
the collective neutrino interaction with charged leptons populating the main
Landau level in the field B1 and their observation would be sensitive to the
relic neutrino density asymmetry δnν = nν − nν̄ (see below Eq. 6).

It is well-known that many astrophysical objects are magnetized, in par-
ticular, planets (a few Gauss), stars (∼ 1012 Gauss for neutron stars), spiral
galaxies, clasters of galaxies (∼ µG = 10−6 Gs). Large-scale fields have scales
exceeding L ≥ 1 AU=1.49×1013 cm, even L ≥ 1 pc = 3 × 1018 cm.

The observation of galactic (intergalactic) and stellar magnetic fields
started many years ago being initiated by the well-known theoretical pre-
dictions. First, in 1943 Alfvén showed that magnetic fields survive in a
highly conducting plasma. Then in 1949 assuming that galactic magnetic
fields are the primordial ones, Fermi estimated the strength of galactic mag-
netic fields, Bgal ∼ 10−6 Gs, which keep (tangling) observable cosmic rays.
This estimate comes immediately from the energy equilibrium of cosmic rays
with magnetic fields, wcr ∼ B2

gal/8π ∼ 1 eV/cm3. Simultaneously (1949)
Hiltner and independently Hall observed polarization of starlight- an effect
of galactic magnetic field aligning the dust grains.

Let us recall the experimental ways for a measurement of the usual (ax-
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ial vector) magnetic fields B1. There are three ways. Unfortunately, the
Doppler broadening embarrasses the simplest way to measure the longitudi-
nal component causing the Zeeman splitting of spectral lines (neutral hydro-
gen, f = 1420 MHz, λ = 21 cm):

∆νZeeman =
µBB‖

π
∼ 3 Hz � ∆νDoppler =

vT

c
ν ∼ 30 kHz.

The second way, the observation of synchrotron emission gives ability to
estimate the radio emission intensity for the typical size of the source L :
(Btot,⊥)(α+1)/2W0L, then the transversal magnetic field can be found from
the electron distribution: nedE = n0E

−αdE for which the index α should be
defined somehow.

First, this way was used for synchrotron emission of Crab nebula (in
50-60-th) (measurement of B⊥ in region ν ∼ GHz) where the intensity max-
imum is given by the frequency,

νmax

MHz
' 15

(
Btot,⊥

µG

)(
Ee

GeV

)2

,

which again depends on the parent electron energy Ee.
The most popular way to observe astrophysical magnetic fields is the

measurement of Faradey rotation of polarization plane.
Lyne, Smith suggested in 1968: the knowledge of the column of elec-

tron density along light ray (from pulsars), called dispersion measure DM ∝∫
nedl , allows to find the longitudinal component B‖ from the Faradey ro-

tation of polarization plane φ = φ0 + RM × λ2, in dependence on the wave
length λ, where RM = ∆φ/∆λ2 ∝ DM × B‖ :

RM = 0.8119
∫ (

B‖

µG

)(
ne

cm−3

)
d

(
l

pc

)
rad

m2

In the next section we recall how the usual dynamo mechanisms look in
standard MHD without neutrinos. Then in section 3 we generalize Faradey
equation in SM with neutrinos and in section 4 we discuss the evolution of
mean magnetic fields in hot plasma of early universe. In section 5 we compare
the new collective mechanism of the mean magnetic field generation with the
collision one suggested in [2]. In section 6 we resume our results.
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2 Two dynamo mechanisms of magnetic field

amplification

¿From Maxwell equation ∂H/∂t = −∇ × E and Ohm’s law E = −v ×
H + j/σ = −v × H + (∇ × H)/4πσ one obtains Faradey equation (νm =
(4πσcond)

−1)

∂H

∂t
= ∇× v × H + νm∆H

for the total magnetic field H = B + b and velocity field v = V + u, which
include small-scale (random) components < b >=< u >= 0.

Krause and Rädler [3] define the ponderomotive force as the mean one
~ε =< u×b >= νturb∇×B−αB where the second term is stipulated by the
fluid vortices in a turbulent medium, that leads to the evolution equation for
large-scale magnetic field (αΩ− dynamo):

∂Ω
∂r

, ∂Ω
∂θ

(Parker) +η∇2B

↑↑↑↑↑↑ ↗↗↗

∂B

∂t
= ∇× V × B −∇× νturb∇× B + ∇× αB (1)

Notice that hydrodynamic diffusion is much bigger than the microscopic
one caused by the plasma conductivity, νturb � νm. The first term in the
r.h.s. of Eq. (1) is called dynamo term which depends on the differential ro-
tation of a medium and vanishes, e.g. for rigid rotation of a magnetized body.
Namely, the differential rotation plus α-effect given by last term in (1) mean
the standard αΩ-dynamo mechanism. Nevertheless, even in the absence of
such rotation the existence of α-term can lead to so-called α2-dynamo, or
to the α-effect (compare below Eq. (8). Important: the hydrodynamic
helicity α = −τ < u · (∇ × u) > /3− is the pseudoscalar in standard MHD
(without neutrino!), or obviously, Eq. (1) preserves parity as it should be
in QED. The detailed analysis of the dynamo mechanisms in macroscopic
electrodynamics is done in the book [4].
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3 MHD in polarized medium and parity non-

conservation

We refer here to the work [5] where MHD derived from the kinetic equations
[6] is generalized in SM of particle physics both for an isotropic plasma and
a magnetized medium. The Euler equation for σ−component of plasma (
accounting for collisions in τ−approximation) takes the form:

dPσ

dt
= −νem

σ δPσ − (νσν + νσν)Pσ − ∇pσ

nσ
+

+ qσ(E + [Vσ × B]) + fweak
σ , (2)

where weak force includes two terms fweak
σ = f (V )

σ + f (A)
σ :

the weak vector force f (V )
σ derived by another way (Lagrangian method) in

[7]

f (V )
σ = −(sign σ)GF

√
2
∑

νa

ca
V

[
−∇δnνa

(x, t)−

−∂δjνa
(x, t)

∂t
+ Vσ ×∇× δjνa

(x, t)
]
, (3)

and the weak axial vector force f (A)
σ [5] appearing in magnetized plasma:

f (A)
σ =

GF

√
2δσe(sign σ)

nσ

∑

a=e,µ,τ

c(A)
σνa

[
n0σb̂

∂δnνa

∂t
+

+N0σ∇(b̂ · δjνa
)
]
; ort b̂ = B/B. (4)

Here δjµ
νa

= (δnνa
, δjνa

) = jµ
νa

(x, t)− jµ
νa

(x, t) is the neutrino four-current
density asymmetry, µ = 0, 1, 2, 3; B = B1 is the usual (axial-vector) large-
scale magnetic field; n0σ =| e | BT ln 2/2π2 is the charged lepton density at
the main Landau level; N0σ is the relativistic correction [5] to this density,
N0σ → n0σ in non-relativistic plasma; ca

V = 2ξ ± 0.5, c(A)
σνa

= ∓0.5 are vector
and axial vector couplings in SM (upper sign for electron neutrinos), ξ =
sin2 θW = 0.23 is the Weinberg parameter.

Multiplying Euler equation by the electric charge qσ, summing over σ and
dividing by Q2 =

∑
σ q2

σ , we find the electric field E = −∑σ(q2
σ/Q2)Vσ×B+
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..., from where using Maxwell equation ∂tB = −∇× E one obtains Faradey
equation for evolution of MEAN (large-scale) magnetic field in SM:

∂tB = ∇× αB + η∇2B (5)

Here diffusion coefficient η = (4π137 T )−1 - is given by the conductivity of
relativistic plasma.

Let us neglect the neutrino vorticity, ∇×δjν = 0, (neutrino gas rotation is
absent), or weak vector force (3) does not contribute to (5). From the axial-
vector weak force given by Eq. (4) that implies PARITY VIOLATION!!!

using αδij-term and without any action of Coriolis force that leads in standard
MHD to mirror asymmetry of left-handed and right-handed fluid vortices, in
other words, NO FLUID ROTATION!!! we derive the scalar α-parameter
entering Faradey equation (5):

α =
GF

2
√

2 | e | B

∑

a

c(A)
eνa

[(
n0− + n0+

ne

)
∂δnνa

∂t

]
'

' ln 2

4
√

2π2


 10−5T

m2
pλ

(ν)
fluid



(

δnν

nν

)
(6)

Here λ
(ν)
fluid is the scale of neutrino gas inhomogeneity.

For small neutrino chemical potentials ξνa
(T ) = µνa

(T )/T � 1, the neu-
trino density asymmetry entering (6) is of the form

δnν

nν

=
∑

a

c(A)
eνa

δnνa

nνa

=
2π2

9ζ(3)
[ξνµ

(T ) + ξντ
(T ) − ξνe

(T )],

where one can use the bound on the electron neutrino chemical potential
coming from the BBN constraints, | ξνe

| <∼ 0.07 [8].

4 Amplification of large-scale magnetic fields

in early universe

The spatial scale of the mean magnetic field obeying the evolution equation
(5) Λ = η/α is given by [1]:

Λ

lH
= 1.6 × 109

(
T

MeV

)−5

 λ

(ν)
fluid

lν(T )


 | ξνe

(T ) |−1 (7)
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The growth rate α2/4η defines the mean magnetic field amplitude

B(t) = Bmax exp

(∫ t

tmax

α2(t′)

4η(t′)
dt′
)

. (8)

Accounting for (6), the expansion time t = 2.4 sec (T/MeV )−2/
√

g∗ and
(T/2 × 104 MeV) → x < xmax = 1, such amplitude takes the form

B(x) = Bmax exp


25

∫ 1

x

(
ξνe

(x′)

0.07

)2

x′10dx′


 (9)

Thus, during the cooling of universe the scale of mean magnetic field (7)
overcomes horizon, Λ >∼ lH , somewhere at the temperature T <∼ 100 MeV,
while its amplitude (9) increases by ≈ ten orders of magnitude from a small
initial value Bmax at the high temperature T ∼ 20 GeV � TEW ∼ 100 GeV.

5 Comparison with weak collision mechanism

Accounting for the weak collision terms in Euler equation (2) one can find
that the difference of weak cross-sections σνe− − σνe+ = 7G2

FT 2 leads to the
friction force separating electrons and positrons, or to the electric current
caused by the neutrino density asymmetry [2]:

Jcollision
ext ' eneδnν

3
(σνe− − σνe+)τe =

= 4 × 10−20eT 3
(

T

MeV

)3
(

δnν

nν

)
(10)

Such current generates field: ∂tB = ... + σ−1
cond∇× Jcollision

ext

Let us compare the collision current (10) with its analogue caused by
collective mechanism, e.g. with the weak vector current originated by the
force (3)

Jcollective
ext =

eGF

√
2cV

α
σcond [V ×∇× Vνδnν]

One obtains the ratio

Jcollision
ext

Jcollective
ext

= 2 × 108
(

T

MeV

)−3

λ

(ν)
fluid

lν(T )


 , (11)
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or at high temperatures, T >∼ 1 GeV, and for the neutrino fluid inhomogeneity

scale λ
(ν)
fluid ≤ lν(T ), collective mechanism is more efficient. And vice versa,

near the decoupling time (low temperatures T ∼ MeV) collision mechanism
is more important.

6 Discussions and conclusions

We rely here on the following scenario of the mean magnetic field generation.
First, a small-scale magnetic field is generated in phase transitions in early
Universe. These are 1a) GUT phase transition violating the symmetry of
strong and electroweak interactions SU(5) −→ SU(3)c ⊗ (SU(2) ⊗ U(1)Y at
T ∼ 1015 GeV∼ 1028 K; 1b) Electroweak (EW) phase transition violating
symmetry SU(2) ⊗ U(1)Y −→ U(1)em at T ∼ MW,Z ∼ 102 GeV∼ 1015 K;
Brms ∼ M2

W /e ∼ 1024 Gauss; 1c) Adronization of quark-gluon plasma, QCD-
phase transition, Brms ∼ T 2

QCD/e ∼ 1018 Gauss.
Then at the step 2) domains of these strong small-scale (random) fields

are merged through inversed cascade (in Fourier space via decays ω = ω1+ω2,
k = k1 + k2) leading to a large-scale field of a small amplitude −→ Bmax �
T 2

max/e- seed field in our model of mean fields.

The scale of mean field , L � lH , , increases very efficiently due to collec-
tive interactions with inhomogeneities of neutrino gas resulting in B becomes
global uniform, L ≥ lH . For instance, for the neutrino inhomogeneity scale
λ

(ν)
fluid ∼ lν(T ) magnetic field reaches superhorizon size at T ∼ 100 MeV. Such

field does not dissipate (ohmic losses are negligible), survives the recombina-
tion time and can be a seed for galactic magnetic field.

Accordingly (9) the amplitude B increases exponentially from an initial
Bmax only at the relativistic stage T � me (α2−mechanism), then magnetic
field (frozen-in) cools down as B ∼ T 2.

Let us emphasize that the mean magnetic field B = B1 + B2 includes
an unusual part B2 which is a pure vector (violating parity) and the search
for its issues in astrophysical observations remains the challenge for future
exploration.

Authors acknowledge RFBR grants 04-02-16094 and 04-02-16386. The
work by V.B.S. was partially supported by the program of the RAS Presidium
”Non-stationary phenomena in astronomy”.
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