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Abstract

The birefringence of a neutrino sea is discussed in the Standard
Model. We demonstrate that the optical activity of a neutrino sea
in the SM is dominated by the contribution of the two-loop diagrams
that are five order of magnitudes larger than one-loop diagrams.
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My talk is based on an unpublished paper in collaboration with G. Karl.

1 Introduction. Preliminaries

In the last decade a number of authors raised a question on the possibility of
the violation of Lorentz and CPT invariance.1 To get a taste of this activity
one can look at the paper written by Glashow and Coleman [1]. The most
interesting scenario is that the speed of light in vacuum (i.e. in intergalactic
space, in practice) is slightly different for different polarizations states of
light, i.e. vacuum is birefringent. It is clear that such effect would indicate
a small violation of Lorentz and CPT invariance at the fundamental level.

There is no many choices to get Lorenz violation at the level of La-
grangian. If we wish to preserve gauge invariance and renormalizability of
QED there is more or less one way to modify QED Lagrangian. That is

L = −
1

4
FµνFµν + ∆L, ∆L =

1

2
εµναβbµAνFαβ , (1)

where Aµ, Fαβ are potential and field-strength tensor for electromagnetic
field, and bµ is some new field. The condensation of vector field bµ in vacuum,
i.e. a constant vector field in eq.(1), generates violation of Lorentz and CPT
symmetry.

One can check that in the ”rest” frame where bµ = (b0, 0, 0, 0) the index of
vacuum refraction for left and right circular polarized light n+,− is different
from unity and is different for different polarization states:

n+ = 1 + b0/ω, n− = 1 − b0/ω . (2)

Here ω is the light frequency.
For a liner polarized light it means that the plane of polarization rotates

at angle ∆φ when light propagates the distance l

∆φ = ω(n+ − n−)l . (3)

Thus the rotatory power Φ = ∆φ(l)/l is

Φ = ω(n+ − n−) = 2b0. . (4)

1Actually every week in electronic arhive one can find one or two papers devoted to
this subject.
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Non-zero b0 (vacuum condensation of vector field bµ) leads to a birefringence
of vacuo. That is how people work with vacuum birefringence at fundamental
level.

Less radical (and more solid) physical reason for light to have different
speed of propagation in intergalactic space for different polarization states
is P -odd interaction of light with neutrino sea. In this case neutrino sea in
intergalactic space plays a role of optical active media, i.e. of a left-handed
sugar.

The idea that intergalactic space is a birefringent medium for light due to
the presence of a neutrino sea has been contemplated for a long time. Some
thirty years ago, Royer [3] estimated in V − A theory an effect of order GF

Φ ∼ αGF k3
F , (5)

where kF is Fermi momentum of neutrino sea. Later, Stodolsky 2 noted that
due to a theorem of Gell-Mann [4] there can be no such effect with massless
neutrinos and a point-like coupling, i.e.

Φ ∼ 0. (6)

In the early 1980’s data on propagation of radio waves through inter-
galactic space put a stringent upper bound on possible optical activity of the
neutrino sea [5] and [6] and this led to renewed estimates for the size of such
effect on the assumption of a neutrino magnetic moment, which occur for a
massive neutrino [6].

More recently an evaluation was made for massless neutrino and for on-
shell photons [8] in one-loop approximation withing the Standard Model
(SM). The effect is non-zero but extremely small

Φ ∼ αGFk3
F

(kF ω)2

m4
W

. (7)

Here mW is the mass of W boson. Due to Gell-Mann theorem there is
additional suppression factor of the order (kFω)2/m4

W to naive estimate of
Royer 3.

I my talk I demonstrate that these one-loop estimates for on-shell photon-
neutrino scattering are irrelevant. The main contribution to the optical ac-
tivity comes from the two-loop amplitude. The latter is larger than the

2This observation was recorded in a review [2]
3See also the calculations for off-mass shell photons [7]
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one-loop estimates by a factor of 105 or more. There is simple physics be-
hind this amazing result.

2 Photon-neutrino interaction

2.1 Gell-Mann theorem

According to Gell-Mann’s theorem [4] point-like weak interactions and mass-
less neutrino leads to vanishing amplitude for photon-neutrino effective in-
teraction. The theorem is easy to understand in the cross channel, i.e. for
annihilation of νν̄ pair into γγ in the center of mass frame.

For point-like interaction the orbital moment of a pair of neutrinos is
exactly zero L=0. Thus for massless left-handed neutrino and right-handed
antineutrino the total angular momentum J=1. On the other hand for two
on-shell photons the states with J=1 are forbidden by Landau’s theorem
[9]. As a result the transition between νν̄ and γγ states is forbidden in a
point-like limit.

To escape Gell-Mann’s restriction one needs non-local interactions in or-
der to include higher orbital momenta of the pair νν̄ into annihilation process.
In the Standard Model, where the W and Z bosons mediate the interaction,
the probability amplitude for neutrino pair to have nonzero orbital moment
is proportional to some power of small factor ∼ p/mW , where p is neutrino
momenta. The factor 1/mW measures the shortest separation of two neutrino
during interaction (non-locality) in one-loop approximation.

2.2 Effective Lagrangian Approach

The standard way to deal with low-energy scattering is to use Effective La-
grangian approach.

The simplest example of the Effective Lagrangian is the four-fermion in-
teractions of neutrinos ν with electrons e. For small fermion momenta one
can forget about degrees of freedom associated with W and Z boson and can
write the Effective Lagrangian only for fermionic fields:

Leff =
GF√

2
(ν̄γαν)(ēΓαe) , (8)
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where Γα = gV γα + gAγαγ5. In the SM gV = 3
2
− 2 sin2 θW , gA = 3

2
. For

momenta smaller than mW (or mZ) the effective Lagrangian is as good as
the fundamental Lagrangian of the SM .

Consider now the process ν(p) + γ(k) → ν(p) + γ(k). Neutrino has no
electric charge and interaction between neutrino and photons takes place only
at the level of loop diagrams. They are numerous and a bit complicated. For
small momenta (pk/m2

W ) � 1 one can expand ν(p) + γ(k) → ν(p) + γ(k)
amplitudes in the power series in this small parameter. The lowest terms
of this expansion can be represented as a matrix element of the appropriate
operators, i.e. of the particular terms of the Effective Lagrangian.

Each term of the Effective Lagrangian has to be Lorenz-invariant com-
bination of gauge-invariant electromagnetic field tensor Fµν and left-handed
neutrino field νL = 1

2
(1 + γ5)ν and their derivatives. The operator may

have high dimensions D. To preserve correct dimension of the Lagrangian
[L] ∼ [m]4 the coefficients in front of this operator should be proportional to
appropriate power of (1/m), where m is the scale of mass that walk inside
the loops. The actual calculation of the diagrams gives numerical coefficient.

2.3 P-even scattering amplitude

Consider how all these work in the case of P -even νγ-scattering. In this case
the amplitude should be the same for right-handed photons and left-handed
photons. One has to construct appropriate Lorenz invariant operators from
the fields Fµν and νL. The simplest combination of the fields, that satisfies
all these conditions, looks as follows:

Leff ∼
e4

m4
[FµαFµβ]ν̄γα∂β(1 + γ5)ν + h.c. , (9)

It has dimension D = 8. Matrix element of Leff for forward scattering
gives the amplitude

T ∼
e4

m4
(pk)2ε(k)∗ε(k) , (10)

If we identify parameter m in eq.(9) with the largest mass in diagrams (i.e.
with mW ) we reproduce well known result for neutrino-photon amplitude [11]
up to the numerical constant

T ∼ GF α
(pk)2

m2
W

ε(k)∗ε(k) , (11)
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Of course it is important to calculate numerical coefficients. But even before
any calculations from this simple exercise we have learn two lessons.

First, non-zero term for γν scattering appears only in the second order
in (pk)2. It indicates immediately that any calculations that give effect of
the order (GFα) ∼ α2/m2

W (such as in e.g. of ref. [4, 10]) are erroneous.
It is impossible to violate Gell-Mann theorem in the framework of Effective
Lagrangian approach. Appropriate operators do not exist.

Second, the actual calculations for Effective Lagrangian are simplified
enormously. Indeed now one expands every individual Feynman diagram up
to the order of (pk)2. To calculate the numerical factor one can put external
momenta in remaining integrals to be equal zero, i.e. p = 0 and k = 0. For
zero external momenta Feynman integration becomes trivial and the whole
problem reduces to a pure algebraic (though rather boring) calculations of
traces and products.

2.4 Optical activity. P-odd scattering amplitude

Now let us come back to P -odd effects in νγ scattering and find an appro-
priate operators in Leff responsible for optical activity. The simplest La-
grangian that depend on P - odd combinations of photons amplitudes looks
as follows

Leff ∼
1

m4
[FµαF̃µβ][ν̄γα∂β(1 + γ5)ν] + h.c. , (12)

where F̃µν = 1
2
εµναβFαβ.

The surprise is that this operator does not work in our case. Indeed
refraction index is proportional to the photon forward scattering amplitude.
One can check that the matrix element of FµαF̃µβ between photons with
the same momenta and polarization ( forward scattering) is identically zero.
Thus operators of D = 8 do not contribute into P -odd forward scattering
and effect is zero in (pk)2/m4 order!

Now we have to look for operators of higher dimension D = 10. One of
these operators looks like follows

Leff ∼
1

m6
[Fµα(∂γF̃µβ)][ν̄γα∂β∂γ(1 + γ5)ν] + h.c. (13)

With this Leff the forward scattering amplitude of a photon of momen-
tum k from a neutrino of momentum p is equal to

6



T = C(e4/8π2)(pk/m2)2εµναβε(
µk)ε∗ν(k)(pαkβ/m

2). (14)

This amplitude has different contribution to left-handed and to right-
handed photons scattering: TLL = −TRR.

2.5 One-loop calculations of P-odd effect

The actual calculation of the coefficient C has been done in one loop-approximation
in [8] with the results

T = C(e4/8π2s2)(pk/m2
W )2εµναβε(

µk)ε∗ν(k)(pαkβ/m2
W ) , (15)

where
C = 4/3(ln(m2

W /m2) − 11/3), (16)

in the first reference in [8] and

C = 4/3(ln(m2
W/m2) − 8/3), (17)

in the second one[8]. The reason for that discrepancy is unknown and it would
be interesting to understand whether there is a correct one-loop result.

The message of this talk is that for a P -odd effect there is enormous
enhancement factor in two-loop approximation. Thus any one-loop results
(correct or erroneous) are irrelevant.

3 Two-loop calculations

3.1 P-odd effect

The physical reason for the dominance of the two-loop diagrams under the
one-loop is simple.

To escape Gell-Mann’s restriction one needs non-local interactions in or-
der to include higher orbital momenta of the pair νν̄ into annihilation process.
In the one loop approximation the only source of non-locality is the W boson
exchange. Thus the one-loop probability amplitude T (1) for neutrino pair to
have nonzero orbital moment is ∼ p/mW . The factor 1/mW measures the
shortest separation of two neutrino in one-loop approximation.

In the two-loop approximation there is a set of diagrams in which two
neutrinos are emitted at a separation of the order of the electron Compton
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wavelength. This is due to e−e+ν in the intermediate state. Thus in two loop
approximation the amplitude T (2) for neutrino pair to have nonzero orbital
moment is ∼ p/me.

Thus moving to the next order in electro-weak interaction we loose a
small factor α/2π , but win a great factor (m2

W /m2
e). The net effect is

(T (2)/T (1)) ∼ (α/2π)(m2
W/m2

e) ∼ 107. (18)

Actual calculation is rather lengthy. The result is

T (2) = (13/27)(G2e2/64π4)(g2
V + g2

A)(pk)2εµναβεµ(k)ε∗ν(k)(pαkβ/m2
e). (19)

The enhancement factor is

T (2)/T (1) = (α/64πsin2θW )(m2
W /m2

e)(13/27)(g2
V + g2

A)/C ∼ 105, (20)

where C is one-loop coefficient from eq.(15). We have lost two order of
magnitude compared with naive estimate. This happened mainly due to the
large logarithmic factor in one-loop coefficient C. Still the effect is very large
∼ 105!

3.2 Two-loop estimates of P-even effect

It is interesting to understand wheather similar enhancement factor takes
place for main P-even amplitude, e.g. for cross section of νν̄ annihilation
into two photon. The answer is negative.

The arguments are the following. Consider two-loop amplitudes with
(e+e−ν) in intermediate state between two external neutrino vertexes. In
local four-fermion approximation we expect that these diagrams are pro-
portional to G2

F α/m2
e . Thus to preserve correct dimension in effective La-

grangian we need operator of dimension D = 10. Appropriate effective La-
grangian is

Leff ∼
G2

Fα

m2
e

[Fµα(∂γFµβ)][ν̄γα∂β∂γ(1 + γ5)ν] + h.c. (21)

For this Leff the scattering amplitude is of the third order in (pk)
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T ∼ C
G2

F α

m2
e

(pk)3ε(k)ε∗(k). (22)

Thus for P-even scattering second order loops give correction of the order
(GFM2

W )(pk/m2
e), i.e. small correction to the one-loop result.

4 Numerical estimates

In spite of a huge missing factor 105 in the one-loop estimates of optical
activity of neutrino sea [12] we find that the physical effect is still tiny. It
is rather unlikely that direct measurements of such small rotation of the
plane of polarization of light when it travels in intergalactic space are ever
possible. But maybe correct estimates of P-odd effect give hint for more
subtle experiments. In any case it is nice to have correct estimate.
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