Accretion of phantom energy onto black hole
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Abstract

Solution for a stationary spherically symmetric accretion of the rel-
ativistic perfect fluid with an equation of state p(p) onto the Schwarz-
schild black hole is presented. This solution is a generalization of
Michel solution and applicable to the problem of dark energy accre-
tion. It is shown that accretion of phantom energy is accompanied
with the gradual decrease of the black hole mass. Masses of all black
holes tend to zero in the phantom energy universe approaching to the
Big Rip.

1 Introduction

Our Universe is seems to undergo a period of accelerated expansion and
it is assumed that a considerable part of the total density consists of dark
energy component with negative pressure [1]. There are several candidates
for the dark energy: cosmological constant (A) or dynamical component
such as quintessence [2] and k-essence [3]. In connection with the solving of
the problem of fine-tuning the models of dynamical dark energy component
are seem to be more realistic as they admit to construct ”tracker” [4] or
7attractor” [3] solutions.

One of the peculiar feature of the cosmological dark energy is a possibility
of the Big Rip [5]: the infinite expansion of the universe during a finite
time. The Big Rip scenario is realized if a dark energy is in the form of the
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phantom energy with p+p < 0. In this case the scenario of Big Rip is possible
when cosmological phantom energy density grows at large times and disrupts
finally all bounded objects up to subnuclear scale. Note, however that the
only condition p 4+ p < 0 is not enough for the realization of Big Rip [6]. In [7]
the authors analyzed the supernova data in the model independent manner
and showed that the presence of the phantom energy with —1.2 < w < —1
is preferable in the present moment of time. The analogy between phantom
and QFT in curved space-time has been developed in [8]. The entropy of the
universe with phantom energy is discussed in [9].

Usually the evolution of quintessence or k-essence are considered in a view
of cosmological problems. However in the presence of compact objects such
as black holes the evolution of dark energy should be sufficiently different
from that in the cosmological consideration. Indeed, what would be the fate
of black holes in the universe filled with the phantom energy and coming
to Big Rip? Recently we showed that all black holes gradually decrease
their masses and very near the Big Rip they finally disappear [10]. In the
present work we study in details the stationary accretion of dynamical dark
energy into the black hole. As a model of DE we take the perfect fluid with
negative pressure. The studying of accretion of perfect fluid on the compact
objects originated from Bondi [11]. The relativistic generalization of the
perfect fluid accretion were made by Michel [12]. Below we find the solution
for a stationary accretion of the relativistic perfect fluid with an arbitrary
equation of state p(p) onto the Schwarzschild black hole. Using this solution
we show that the black hole mass diminishes by accretion of the phantom
energy. Masses of all black holes gradually tend to zero in the phantom energy
universe approaching to the Big Rip. The diminishing of a black hole mass is
caused by the violation of the energy domination condition p+p > 0 which is
a principal assumption of the classical black hole ‘non-diminishing’ theorems
[13]. The another consequence of the existence of a phantom energy is a
possibility of traversable wormholes [14]. In [15, 16, 17, 18] authors studied
the accretion of scalar quintessence field into the black hole, using the specific
quintessence potentials V' (¢) for the obtaining of the analytical solution for
the black hole mass evolution. We use essentially different approach for the
description of DE accretion into black hole, namely, we model the DE by the
perfect fluid with the negative pressure.



2 General equations

Let us consider the spherical accretion of dark energy onto black hole. We
assume that the density of the dark energy is sufficiently low so that the
metric can be described by Schwarzschild metric. We model the dark energy
by a perfect fluid with energy-momentum tensor: 7, = (p + p)u,ty — PGy,
where p is the density and p is the pressure of the dark energy and wu, is
the four-velocity u* = dx*/ds. The integration of the time component of
the energy-momentum conservation law 7" = 0 gives the first integral of
motion
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where © = r/M, u = dr/ds and C is a constant determined below.
Given the equation of state p = p(p), one can introduce the function n
by the relation:
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The function n plays the role of concentration of the particles, though one
can use n for the media without introducing any particles. In this case n is
the auxiliary function. For general equation of state p = p(p), from (2) we
obtain the following solution for n:
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From the conservation of energy-momentum along the velocity
u, T" ., = 0 using (3) we obtain the another first integral:

Muxz = —A, (4)
Noo
where ny (the concentration of the dark energy at the infinity) was intro-
duced for convenience. In the case of inflow u = (dr/ds) < 0 and the constant
A > 0. From (1) and (4) one can easily obtain:
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We will see below that the constant A which determines the flux is fixed for
fluids with dp/dp > 0. This can be done through finding of the critical point.
Following Michel [12] we obtain the parameters of critical point:
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From this by using (2) it follows that V2 = ¢2(p), where ¢ = dp/dp is the
squared effective speed of sound in the media. Combining the Egs. (5), (6),
(7) and (8) we find the following relation:
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which gives the p, for arbitrary equation of state p = p(p). Given p, one can
find n(p,) using (3) and values z., u,, using (7) and (8). Then substituting
the calculated values in (4) one can find the constant A. Note that there is
no critical point outside the black hole horizon (z, > 1) for ¢ < 0 or ¢2 > 1.
This means that for unstable perfect fluid with ¢ < 0 or ¢? > 1 a dark energy
flux onto the black hole depends on the initial conditions. This result has
a simple physical interpretation: the accreting fluid has the critical point if
its velocity increases from subsonic to trans-sonic values. In a fluid with a
negative ¢? or with ¢? > 1 the fluid velocity never crosses such a point. It
should be stressed, however, that fluids with ¢? < 0 are hydrodynamically
unstable (see discussion in [20, 21]). The Eq. (5) together with (3) and (4)
describe the requested accretion flow onto the black hole. These equations
are valid for perfect fluid with an arbitrary equation of state p = p(p), in
particular, for a gas with zero-rest-mass particles (thermal radiation) and
for a gas with nonzero-rest-mass particles. For a nonzero-rest-mass gas the
couple of equations (4) and (5) is reduced to similar ones found by Michel [12].
One would note that the set of equations (3), (4) and (5) are also correct
in the case of dark energy and phantom energy p + p < 0. In this case
concentration n(p) is positive for any p and constant Cy in (5) is negative.

The black hole mass changes at a rate M = —4mr2T, o due to the fluid
accretion. With the help of (4) and (5) this can be expressed as

M = 47TAM2[1000 +p(p00)]' (10)
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For the phantom energy the relation (10) leads to the diminishing of the black
hole mass. That means that in the universe filled with phantom energy the
black holes should melt away. This result is general, it does not depend on
the equation of state p = p(p), the only condition p + p < 0 is important.

3 The analytical models

Let us consider the model of dark energy with linear dependence of pressure
from the density:

p=a(p—po), (11)

which include, among others, the ultra-relativistic gas (p = p/3) and simplest
models of dark energy (pg = 0 and o < 0). Introduced value « is connected
with usual equation of state w = p/p by the relation w = a(p — po)/p. For
a < 0 there is no critical point for the flux of the fluid into the black hole. In
the case of a > 0, using (7) and (8) we find the parameters for critical point
in model (11):
1+ 3a 9 o
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It should be noted that in the linear model (11) the parameters of critical
point (12) determined only by dp/dp = « and do not depend on the param-
eter py, which determines what physical fluid is considered: relativistic gas,
dark energy or phantom energy. Note also that for a > 1 (that corresponds
to the non-physical situation of superluminal speed of sound) there is no
critical point outside the black hole. Let us calculate the constant A which
determines the flux of the fluid into the black hole. From Eq. (3) we find:
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where we defined the effective density peg = p+p = —poar+ (1 + )p. Using
(9) we obtain:

Dot of/(14+a)
(pT) = (1+3a)"?, (14)

where peg, is the value of effective density at the critical point and peg oo is
the effective density at the infinity. Substituting (14) in (13) and then using



(4) we find for linear model:

(1 +3a)(1+3a)/2a
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It is easily seen that A > 4 for 0 < o < 1. For @ = 1 that corresponds to

¢s = 1 the we have A = 4. From this we may conclude that for typical sound

speeds the constant A has value around unity. For some particular choices

of parameter « the values p(z) and u(x) can be calculated analytically. For

example, for & = 1/3 the fluid density is given by:
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The density distribution for another physically interesting case a = 1 is given

by:
B R L[ (R

The corresponding radial fluid velocity u = u(x) can be calculated by substi-
tuting of (16) or (17) into (1). For py = 0 the solutions (16) and (17) describe
correspondingly a thermal radiation and a fluid with ultra-hard equation of
state. In the case of ps < app/(1 + «) the solutions (16) and (17) describe
the phantom energy falling onto the black hole. For example, a phantom
energy flow with parameters a = 1 and py = 4p. results in a black hole
mass diminishing with the rate M = —87(2M)?pu.

4 Black holes in the universe with Big Rip

Now we turn to the problem of the black hole evolution in the universe with
the Big Rip when a scale factor a(t) diverges at finite time [5]. For simplicity
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we will take into account only dark energy and will disregard all others forms
of energy. The Big Rip solution is realized for in the linear model (11) for
p+p<0and a < —1. From the Friedman equations for the linear equation
of state model one can obtain: |p-+p| oc a=3(1¥®) . Taking for simplicity py = 0
we find the evolution of the density of a phantom energy in the universe:

t —2
Poo = Pooyi (1 - _> ’ (18)

.
where 1o
3(1 8
= A ) (19)

and poo; is the initial density of the cosmological phantom energy and the
initial moment of time is chosen so that the ‘doomsday’ comes at time 7.
From (18) and (19) it is easy to see that the Big Rip solutionis realized for
a = dp/dp < —1. In general, the satisfying the condition p + p < 0 is not
enough for the possibility for Universe to come to Big Rip. From (10) using
(18) we find the black hole mass evolution in the universe coming to the Big

Rip:
M, !
M:Mi<1+ Mi ¢ ) , (20)
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where '
My = (3/2) A1+ al, (21)

and M; is the initial mass of the black hole. For a = —2 and typical value
of A =4 (corresponding to uy = —1) we have M, = 3/8. In the limit t — 7
(i.e. near the Big Rip) the dependence of black hole mass on ¢ becomes
linear, M ~ M, (7 — t). While ¢ approaches to 7 the rate of black hole
mass decrease does not depend on both an initial black hole mass and the
density of the phantom energy: M ~ —M,. In other words masses of all
black holes in the universe tend to be equal near the Big Rip. This means
that the phantom energy accretion prevails over the Hawking radiation until
the mass of black hole is the Planck mass. However, formally all black holes
in the universe evaporate completely at Planck time before the Big Rip due
to Hawking radiation.



5 Scalar field accretion

In remaining let us confront our results with the calculations of (not phan-
tom) scalar field accretion onto the black hole [15, 16, 17, 18]. The dark
energy is usually modelled by a scalar field ¢ with potential V' (¢). The per-
fect fluid approach is more rough because for given ’perfect fluid variables’
p and p one can not restore the ’scalar field variables’ ¢ and V¢. In spite
of the pointed difference between a scalar field and a perfect fluid we show
below that our results are in a very good agreement with the corresponding
calculations of a scalar field accretion onto the black hole.

The Lagrangian of a scalar field is L = K — V', where K is a kinetic term
of a scalar field ¢ and V is a potential. For the standard choice of a kinetic
term K = ¢.,¢*/2 the energy flux is Tp, = ¢1¢,. Jacobson [15] found the
scalar field solution in Schwarzschild metric for the case of zero potential
V=0 ¢ = ¢oo[t +2M In(1 — 2M /)], where ¢ is the value of the scalar
field at the infinity. In [17] it was shown that this solution remains valid also
for a rather general form of runaway potential V' (¢). For this solution we
have Ty = —(2M)2¢2 /r? and correspondingly M = 4w (2M )24

The energy-momentum tensor constructed from Jacobson solution com-
pletely coincides with one for perfect fluid in the case of ultra-hard equation
of state p = p under the replacement po, — @2 /2, po — % /2. It is not
surprising because the theory of a scalar field with zero potential V(¢) is
identical to perfect fluid consideration [22]. In a view of this coincidence it
is easily to see the agreement of our result (10) for M in the case of p = p
and the corresponding result of [15, 17].

To describe the phantom energy the Lagrangian of a scalar field must
have a negative kinetic term [5], for example, K = —¢.,¢#* /2 (for the more
general case of the negative kinetic term see [19]). In this case the phantom
energy flux onto black hole has the opposite sign, Ty, = —¢ ¢, where ¢ is
the solution of the same Klein-Gordon equation as in the case of standard
scalar field, however with the replacement V" — —V. For zero potential
this solution coincides with that obtained by Jacobson [15] for a scalar field
with the positive kinetic term. Lagrangian with negative kinetic term and
V(¢) = 0 does not describe, however, the phantom energy. At the same
time, the solution for scalar field with potential V' (¢) = 0 is the same as
with a positive constant potential V; = const, which can be chosen so that
p = —¢? /24 Vo > 0. In this case the scalar field represents the required
accreting phantom energy p > 0 and p < —p and provides the decrease of



black hole mass with the rate M = —47(2M)2¢2,.

The simple example of phantom cosmology (without a Big Rip) is realized
for a scalar field with the potential V' = m?@?/2, where m ~ 10733 eV [23].
After short transition phase this cosmological model tends to the asymptotic
state with H ~ m¢/3"/2 and ¢ ~ 2m/3/2. In the Klein-Gordon equation
the m? term (with the mentioned replacement V' — —V) is comparable to
other terms only at the cosmological horizon distance. This means that the
Jacobson solution is valid for this case also. Calculating the corresponding
energy flux one can easily obtain M = —4m(2M)2¢2 = —64M?*m?/3. For
My = Mg and m = 10733 eV the effective time of black hole mass decrease
is 7= (3/64)M'm=2 ~ 103 yr.
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