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Abstract

Experimental data on deep-inelastic electron-nucleon scattering in a wide range of
x and Q2 are analyzed in a simplified analytic model realazing parton-hadron duality.
Special emphasis is paid to the treatment of the background. The role of the spin
selection rules is discussed.
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1 Introduction

Generalized Parton Distributins (GPD) [1, 2, 3] play an important role in the strong inter-
action theory since they provide a unifying framework for the interpretation of an entire set
of fundamental quantities of hadronic structure, such as, the vector and axial vector nucleon
form factors, the polarized and unpolarized parton distributions, and the spin components
of the nucleon due to orbital excitations. Deeply Virtual Compton Scattering (DVCS) is one
of the key reactions to determine the GPDs experimentally, and it is the simplest process
that can be described in terms of GPDs.

One of the first experimental observations of DVCS was based on the recent analysis
of the JLAb data from the CLAS collaboration with a 4.2 GeV polarized electron beam
in a kinematical regime near Q2 = 1.5 GeV 2 and x = 0.22, where Q2 is minus the photon
virtuality and x is the Bjorken variable. New measurements at at higher energies are curently
being analyzed, and dedicated experiments are planned [4]. The high luminocity available for
these measurements will make it possible to determine details of the Q2, x and t dependences
of GPDs.

On the theoretical side, much progress has been achieved [1, 2, 3] in treating GPD
in the framework of the quantum chromodynamics (QCD) with the light-cone technique.
On the other hand, the prevailing non-nonpertubative effects (resonance production, the
background, low-Q2 effects) dominating the kinematical region of present measurement and
the underlying dynamics still leave much ambiguity in the above-mentioned field-theoretical
approach. Therofore, as an alternative or complementary approach we have suggested in a
number of papers [5, 6, 7, 8] to use dual amplitudes with Mandelstam analyticity (DAMA)
as a model for GPD in general and DVCS in particular. We remind that DAMA realizes
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duality between direct-channel resonances and high-energy Regge behaviore (“Veneziono-
duality”). By introduning Q2-dependence in DAMA, we have extended the model off-shell
and have shown [5, 6] how parton-hadron (or “Bloom-Gilman”) duality is realized in this
way. With the above specification, DAMA can serve as and explicite model for all values
of the Mandelstam variables s, t and u as well as Q2, thus realizing the ideas of DVCS and
related GPDs.

We study inclusive electron-nucleon scattering shown in Fig. 1 with usual notations (see
ref. [8] for more details). The photoabsorption cross section in the resonance region has
been studied in a large number of papers [10, 11, 12, 13, 14] (for a comprehensive review see
Ref. [15]). Most of the data come from SLAC and have been compiled by Stoler [16]. There
are nearly 20 resonances in the γ∗p system in the region between the pion-nucleon threshold
and below 2 GeV, but only a few of them can be identified more or less unambiguously. One
reason is that they overlap and compete with changing Q2 and the other is the uncertainty
due to the background. Therefore, instead of identifying each resonance, one considers
three maxima above the elastic scattering peak, corresponding to some “effective” resonance
contributions.
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Figure 1: Kinematic of deep inelastic scattering.

In this work we present a simplified phenomenological analytical model, realizing parton-
hadron duality, which is motivated by a termination of the real part of nonlinear complex
Regge trajectories [7, 8]. These trajectories play a crucial role in the dynamics of the strong
interactions. Actually, the trajectories can be considered as the basic dynamical variables,
replacing the usual Mandelstam variables s, t and u (which enters only through the trajec-
tories). The parameters of the trajectories can be fitted independently of the masses and
widths of the known resonances, therefore, in principle, they reflect more adequately the
position of the peaks in ep scattering, formed by the interplay of different resonances.

In concentrating on this aspect of the dynamics, we leave more freedom to the choice of
the Q2-dependent form factors. We start with a simplified model, disregarding the helicity
structure of the amplitude and relevant selection rules, concentrating on the role of the
Regge trajectories, analyticity and duality. Their role was treated in a number of papers [17]
(recently in Ref. [20]). We ignore the relatively small (and poorly known) contribution from
the cross sections involving longitudinally polarized photons, σL . In doing so, we anticipate
the connection [5] with the small-x (high-energy) domain, where these simplifications are
commonly accepted.
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The central object of the present study is the nucleon SF, uniquely related to the photo-
production cross section by

F2(x, Q2) =
Q2(1 − x)

4πα(1 + 4m2x2

Q2 )
σγ∗p

t (s, Q2) , (1)

where total cross section, σγ∗p
t , is the imaginary part of the forward Compton scattering

amplitude, A(s, Q2),
σγ∗p

t (s) = Im A(s, Q2) . (2)

The center of mass energy of the γ∗p system, the negative squared photon virtuality Q2 and
the Bjorken variable x are related by

s = Q2 (1 − x)

x
+ m2, (3)

We adopt the two-component picture of strong interactions [18], according to which
direct-channel resonances are dual to cross-channel Regge exchanges and the smooth back-
ground in the s−channel is dual to the Pomeron exchange in the t−channel. As explained in
Ref. [5], the background corresponds in a dual model to a pole term with an exotic trajectory
that does not produce any resonance.

In the dual-Regge approach [5, 6, 7, 8] the Compton scattering can be viewed as an
off-mass shell continuation of a hadronic reaction, dominated in the resonance region by
non-strange (N and ∆) baryon trajectories. The scattering amplitude follows from the pole
decomposition of a dual amplitude [5]

A(s, Q2)
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where i runs over all the trajectories allowed by quantum number exchange, norm and Ai’s
are constants, fi(Q

2)’s are the form factors. These form factors generalize the concept of
inelastic (transition) form factors to the case of continuous spin, represented by the direct-
channel trajectories. The nmin

i refers to the spin of the first resonance on the corresponding
trajectory i (it is convenient to shift the trajectories by 1/2, therefore we use αi = αphys

i −1/2,
which due to the semi-integer values of the baryon spin leaves n in Eq. (4) integer). The
sum over n goes with step 2 (in order to conserve parity).

It follows from Eq. (4) that

Im A(s, Q2) = norm
∑

i=N∗

1
,N∗

2
,∆,E

Ai

nmax
i
∑

n=nmin
i

[fi(Q
2)]2(n−nmin

i
+1)Im αi(s)

(n −Re αi(s))2 + (Im αi(s))
2 . (5)

The first three terms in (5) are the non-singlet, or Reggeon contributions with the N ∗

and ∆ trajectories in the s-channel, dual to the exchange of an effective bosonic trajectory
(essentially, f) in the t-channel, and the fourth term is the contribution from the smooth
background, modeled by a non-resonance pole term with an exotic trajectory αE(s), dual to
the Pomeron (see Ref. [5]). As argued in Ref. [5], only a limited number, N , of resonances
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appear on the trajectories, for which reason we tentatively set N = 3 - one resonance on
each trajectories (N ∗

1 , N∗
2 , ∆), i.e. nmax

i = nmin
i . We tried also with higher values of N ,

but our analyses shows that N = 3 is a reasonable approximation – even if additional peaks
appear, they are suppressed with respect to the dominant one (first on each trajectory),
because of the Q2−behaviour of the form factors. Thus, the limited (small) number of reso-
nances contributing to the cross section results not only from the termination of resonances
on a trajectory but even more due to the strong suppression coming from the numerator
(increasing powers of the form factors). Thus, for practical resonance we have replaced the
formal condition Re α(s) < const by a finite sum in Eq. (5).

In this work we use Regge trajectories with threshold singularities and nonvanishing
imaginary part in the form:

α(s) = α0 + α1s + α2(
√

s0 −
√

s0 − s), (6)

where s0 is the lightest threshold, s0 = (mπ +mp)
2 = 1.14 GeV2 in our case, and linear term

approximates the contribution from heavy thresholds [5, 6, 7, 8].

We have fitted the parameters of the baryon trajectories, given by Eq. (6), such as to
reproduce the experimental masses and widths of the ∆(1236), N ∗(1520) and N ∗(1680)
resonances (see [8] for more details) - the corresponding trajectory parameters are marked
by † in the Table 10 (see Ref. [8] for more details).

Since, by definition, the smooth background does not show any resonance, here we keep
only one term in the sum 1. nmin

E is the first integer larger then Max(Re αE) – to make sure
there are no resonances on the exotic trajectory. We take the exotic trajectory in the form

αE(s) = αE(0) + α1E(
√

sE −√
sE − s), (7)

where the intercept αE(0), α1E and the effective exotic threshold sE are free parameters. As
a first approximation we can assume the following expression for the exotic trajectory [5]:

αE(s) = 0.5 + 0.12(
√

sE −√
sE − s) , (8)

where sE = 1.1452 GeV2; in this case nmin
E = 1.

To start with we use the simplest, dipole model for the form factors, disregarding the spin
structure of the amplitude and the difference between electric and magnetic form factors:

fi(Q
2) =

1

(1 + Q2

Q2

0,i

)2
. (9)

where Q2
0,i are scaling parameters. The relative growth of the three resonance peaks and

background will depend on the scaling factor Q2
0,i. Therefore we choose Q2

0,E > Q2
0,N∗

2

>

Q2
0,N∗

1

> Q2
0,∆ in order to satisfy the experimentally observed behaviour of these terms, for

example, the rise of the background contribution with respect to the resonance one with
increasing Q2; the relative growth of the N ∗

1 and N∗
2 peaks with respect to the ∆ peak.

1In Ref. [9] the whole DAMA integral was calculated numerical and it has been shown that in the
resonance region the direct-channel exotic trajectory gives non-neglactable contribution, reaching up to
10-12%.
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2 Fits to the SLAC and JLab data

In this Section we present a numerical analysis of our model based on the experimental data
from SLAC [16] and JLAB [21]2. This set of experimental data is not homogeneous, i.e.
points at low s (high x) are given with very small experimental errors, thus “weighting”
the fitting procedure not uniformly. This forced us to make a preselection for the fitting
procedure, although all the experimental points are presented in the Figures (see ref. [8] for
more details).

Table 1: Parameters of the fit. In the first column we show the result of the
fit when the parameters of the baryonic trajectories are fixed. The second col-
umn contains the result of the fit when the parameters of the trajectories are
varied. † denotes parameters of the physical baryon trajectories from ref. [8].
∗ Coefficient norm is chosen in such a way as to keep AN∗

1
= 1 in order to see the interplay

between different resonances.

α0 -0.8377 (fixed)† -0.8070
α1 0.95 (fixed)† 0.9632

N∗
1 α2 0.1473 (fixed)† 0.1387

AN∗

1
1 (fixed)∗ 1 (fixed)∗

Q2
N∗

1

, GeV2 2.4617 2.6066

α0 -0.37(fixed)† -0.3640
α1 0.95 (fixed)† 0.9531

N∗
2 α2 0.1471 (fixed)† 0.1239

AN∗

2
0.5399 0.6086

Q2
N∗

2

, GeV2 2.9727 2.6614

α0 0.0038 (fixed)† -0.0065
α1 0.85 (fixed)† 0.8355

∆ α2 0.1969 (fixed)† 0.2320
A∆ 4.2225 4.7279

Q2
∆, GeV2 1.5722 1.4828

s0, GeV2 1.14 (fixed)† 1.2871

α0 0.5645 0.5484
E α2 0.1126 0.1373

sE, GeV2 1.3086 1.3139
Aexot 19.2694 14.7267

Q2
exot, GeV2 4.5259 4.6041

norm 0.021 0.0207

χ2
d.o.f. 28.29 11.60

The first approach to the fitting procedure consists in fixing the parameters of the baryon
trajectories such as order to reproduce the correct masses and widths, leaving the four scaling
constants Q2

i , four factors Ai and the parameters of the exotic trajectories to be fitted to

2We are grateful to M.I. Niculescu for making her data compilation available to us.
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Figure 2: F2 as a function of x for Q2 = 0.45 − 3.3 GeV2.

the data. The results are shown in Table 1 (first column) and the plots of the SF against
x are presented in Fig. 2 (dashed-dotted lines). One can see that the agreement with the
experimental data is poor (χ2

red = 28.29). To improve the fit we proceed as follows.

We try to account for the large number of resonances (about 20) present in the energy
range under investigation, which overlap, as noted in above. To do this we consider the
dominant resonances (N ∗

1 , N∗
2 and ∆) as “effective” contributions to the SF. In other words

we require that they mimic the contribution of the dominant resonances plus the large
number of subleading contributions, which, together, fully describe the real physical system.
Therefore, we have refitted the data, allowing the baryon trajectories parameters to vary.
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The resulting parameters of such a fit are reported in Table 1 (second coloumn). It is worth
noting that although the range of variation was not restricted, the new parameters of the
trajectories stay close to their physical values, showing stability of the fit and thus reinforcing
our previous considerations. From the relevant plots, shown in Fig. 2 with full lines, one can
see that the improvement is significant, although agreement is still far from being perfect
(χ2

d.o.f. = 11.6).
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Figure 3: The ratio of the resonance to background components of the SF at the resonance
peaks. See text for more details.

The dashed lines in Fig. (2) present a “scaling curves”, i.e. a phenomenological param-
eterizations of the SF exhibiting Bjorken scaling and fitting the data. We have used the
parameterizations studied in Ref. [22].

We have calculated also the Q2-dependent ratio of the resonance to background compo-
nents of the SF at three fixed values x, namely at three physical resonance peaks, sN∗

1
, sN∗

2
,

s∆, for the fit with fixed physical baryon trajectories and at effective resonance peaks, for the
fit with free baryon trajectories. On this plot the “background” for the selected resonance
consists of three parts, i.e. the contribution from the exotic trajectory (usual background
term) and the contributions from the two other resonances. The results are shown in Fig.
3. One may see that for N ∗

2 and for N∗
1 for Q2 > 1.5 GeV2 the “background” contributes

more than the resonant term itself. It was suggested in ref. [20] to study the ∆ peak only in
order to be able to neglect the contribution from the background. Our analyses shows that
even for the ∆ peak the background can not be neglected for Q2 larger than 1.5 − 2 GeV2.

One may also ask the question of how good the dipole expression for the form factors,
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Eq. (9) does work. To answer this question we performed the fit letting the powers of the
1/(1+Q2/Q2

0,i) in Eq. (9) free to vary. The results show that second power is a good approx-
imation - powers change only by about 5%. As we shall see below the dipole approximation
may deteriorate towards large values of Q2 due to the spin effects, ignored in the present
model.

Consider now the behaviour of F2(x, Q2) at large x when s is kept in the resonance region.
Let us remind the reader that x, Q2 and s are related by Eq. (3) with m = mp. Thus, each
term in the rhs of Eq. (5), using Eqs. (1, 2) looks like

F2(x, Q2)i,n =
Q2(1 − x)

4πα(1 +
4m2

px2

Q2 )

norm Ai

(1 + Q2

Q2

0,i

)4(n−nmin
i

+1)

· Im αi(s)

(n −Re αi(s))2 + (Im αi(s))2
. (10)

In the limit of x going to 1 and s in the resonance region (1−4 GeV2), Q2 = x(s−m2
p)/(1−x)

is much larger than s and Q2
0,i, which are of the same order. Thus we end up with

F2(x, Q2) ≈ norm
∑

i=N∗

1
,N∗

2
,∆,E

Ai

nmax
i
∑

n=nmin
i

(1 − x)4

·Mi,n(x, Q2)

(

1 − 4
Q2

0,i + s − m2
p

Q2
+ O

(

1

Q4

))

, (11)

where

Mi,n(x, Q2) =
(s − m2

p)x

4πα(1 +
4m2

px2

Q2 )

(

Q2
0,i

s − m2
p

)4 Im αi(s)

(n −Re αi(s))2 + (Im αi(s))2
. (12)

In our range of interest Mi,n is a slowly varying function of both x and Q2. For each (i, n) the
term proportional to (1 − x)4(n−nmax

i
+1) shows the main tendency of F2(x, Q2)i,n, while Mi,n

is responsible for the “fine structure” - resonances at large x. Of course, for each trajectory
i the main contribution comes from the first resonance - (1 − x)4.

The important ingredient neglected so far in the model is spin, i.e. helicity structure
of the scattering amplitude and relevant selection rules. These change the form factors in
a non-trivial way, thus complicating the Q2−dependence of the SF’s (see Ref. [20] for a
recent treatment of the problem). These corrections have not yet been included in our study
and might be responsible for relatively poor agreement with data. We hope to address this
problem in a forthcoming work.

At this point it might be interesting to see the effect of spin corrections. As it has been
shown in Ref. [20], if one explicitly takes into account the spin structure of the F2, the main
contribution from each resonance in the limit x → 1 (Q2 → ∞) is proportional to (1 − x)3.
Thus our model, neglected spin effects, strongly underestimate the physical SF.

8



3 Conclusions

The idea of the present paper is that deep inelastic scattering can be described by a sum of
direct channel resonances lying on Regge trajectories. The form of these trajectories is crucial
for the dynamics. It is constrained by analyticity, unitarity and by the experimental data.
The use of baryon trajectories instead of individual resonances not only makes the model
economic (several resonances are replaced by one trajectory) but also helps in classifying the
resonances, by including the “right” ones and eliminating those nonexistent.

To fix the ideas and make a rough fit to the data, we constructed a simplified model
with just 3 baryon trajectories, in which heavy thresholds have been replaced for simplicity
by a linear term, and with the lowest-lying resonances. In fact, apart from the “prominent”
three resonances many more should be included by means of relevant baryon trajectories. To
this end an independent study of baryon trajectories and updated fits to dozens of existing
resonances should be done. We intend to continue working in this direction.
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