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Abstract

The nonperturbative effects in the quark form factor are considered in

the Wilson loop formalism, within the framework of the instanton liq-

uid model. For the integration path corresponding to this form factor,

the explicit expression for the vacuum expectation value of the Wilson

operator is found to the leading order. It is shown that the instantons

produce the power-like corrections to the perturbative result, which

are comparable in magnitude with the perturbative part at the scale

of order of the inverse average instanton size. It is demonstrated that

the instanton contributions to the quark form factor are exponentiated

to high orders in the small instanton density parameter.

1 Introduction

In the present report, we start the investigation of the instanton induced
effects in the high-energy QCD processes by means of the Wilson integral
formalism [1, 2]. The basic object of study in such an approach is the gauge
invariant vacuum average of the Wilson loop operator

W (C) =
1

Nc

Tr〈0|P exp
(
ig
∫

C
dxµÂµ(x)

)
|0〉 , (1)
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where the integration goes along the closed contour C and the gauge field

Âµ(x) = T aAa
µ(x) , T a =

λa

2
, (2)

belongs to the Lie algebra of the gauge group SU(Nc), while the Wilson loop

operator Peig
∫

dxA(x) lies (for quark lines) in its fundamental representation.
We propose an approach which allows one to evaluate the instanton con-
tributions to the Wilson integrals made of several (in)finite lines containing
specific cusp, and/or cross singularities. For this purpose, we start with one
of the simplest configurations, i. e., the angle with infinite sides that cor-
responds to the integration path for the Wilson operator describing the soft
part of the quark Sudakov form factor [3].

2 Perturbative contribution

For brevity, we omit here the detailed discussion on the renormalization
of cusp singularities, just say that it can be proven that there exists the
consistent renormalization procedure for such quantities [4]. For details, see
[5].

The leading nontrivial cusp dependent term in the expansion of W (C)
(1) in powers of g2 for the angle with two infinite straight line rays (Fig. 1a)
contains the contributions from both perturbative (Fig. 1b) and nonpertur-
bative (Fig. 1c) fields, which can be expressed in the following form:

W LO(γ) = −g2CF

2

∫

Cγ

dxµ

∫

Cγ

dyν Dµν(x − y) , (3)

where CF = N2
c
−1

2Nc

. It is convenient to present the gluon propagator Dµν(z)
in the form

Dµν(z) = δµν∂
2
zd1(z

2) − ∂µ∂νd2(z
2) . (4)

Here and in what follows, we use the dimensional regularization with n =
4− 2ε, ε < 0 in order to control the IR-divergent terms in the integrals. The
remaining UV singularity (due to the infinitely small z2 in the vicinity of the
cusp) will be regularized by the corresponding UV cutoff.

The trajectories of the incoming and outgoing quarks (Fig. 1a) may be
parameterized as x = v1s (0 < s < ∞) , y = v2τ (−∞ < τ < 0) . The
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angle between the vectors v1 and v2 is given in the Minkowski space by

cosh χ = (v1v2) =
(p1p2)

m2
= 1 +

Q2

2m2
, −Q2 = (p2 − p1)

2 , v2
1,2 = 1, (5)

where the quark momenta are supposed to be on-shell: p2
1 = p2

2 = m2. The
continuation to the Euclidean space is defined as [7, 8] χ → iγ. Then, we
have to consider the quantity [4, 7]:

W LO(γ) = W̃ LO(γ) − W̃ LO(0) , (6)

where [5]
W̃ LO(γ) = −g2CF [(n − 2)d1(0)γcotγ + d2(0)] . (7)

It follows from Eq. (6) that the integrals (3) in which both points x and
y belong to the same side of the angle do not contribute to the quantity
W LO(γ). Hence we have within the one loop accuracy

W (γ) = 1 − 4παSCF (n − 2)h(γ)d1(0) , (8)

where
h(γ) = γcotγ − 1 (9)

is the universal cusp factor. We should emphasize here that the expression
(8) holds for perturbative as well as for nonperturbative part depending on
the value d1(0). For the perturbative field, Eq. (8) reflects the explicit gauge
invariance in the set of covariant gauges, since the gauge fixing parameter ξ
enters only in the function d2(z

2).
Let us consider first the perturbative part W LO

P (γ). By using the free
propagator in the Euclidean space the IR-regularized value of d1(0) can be
written in the form:

d1(0; ε, λ) =
(λ2π)ε

16π2

∫
∞

0
dαα−(1+ε) , (10)

where λ2 is the IR regularization parameter. This integral diverges at the
upper (UV) limit for ε < 0, and hence we must regularize it. To this end, we
may introduce the UV cutoff µ2, and finally we get

d1(0; ε, µ/λ) = −1

ε

1

16π2

(
λ2π

µ2

)ε

. (11)
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Thus one obtains the perturbative part with one loop accuracy:

WP (γ, µ) = 1 − αS

2π
CFh(γ)ln

µ2

λ2
. (12)

The one-loop cusp anomalous dimension which satisfies the RG equation
reads: Hence, we reproduce the Wilson operator value for the infinite contour
with the Euclidean cusp parameter γ.

3 Instanton contribution

Let us estimate the nonperturbative contribution to W (C) in the instanton
model. The instanton field is given by

Âµ(x; ρ) = Aa
µ(x; ρ)

σa

2
=

1

g
Rabσaη±b

µν(x − z0)νϕ(x − z0; ρ), (13)

where Rab is the color orientation matrix (a, b = 1, 2, 3), σa’s are the Pauli
matrices, and (±) corresponds to the instanton, or anti-instanton. The av-
eraging of the Wilson operator over the nonperturbative vacuum is reduced
to the integration over the coordinate of the instanton center z0, the color
orientation and the instanton size ρ. The measure for the averaging over the
instanton ensemble reads dI = dR d4z0 dn(ρ), where dR refers to the averag-
ing over color orientation, and dn(ρ) depends on the choice of the instanton
size distribution. Taking into account (13), we write the Wilson integral (1)
in the single instanton approximation in the form:

wI(C) =
1

Nc

〈0|Tr exp (iσaφa) |0〉 , (14)

where the phase is

φa = Rabη±b

µν

∫

Cγ

dxµ (x − z0)νϕ(x − z0; ρ) . (15)

Thus we obtain the all-order single instanton contribution to the cusp-dependent
part of Wilson loop (1):

wI(γ) =
∫

d4z0

∫
dn(ρ) [cos φ(γ, z0, ρ) − cos φ(0, z0, ρ)] , (16)

where the expression for squared phase φ2 = φaφa can be found in [5].
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Although the expression (16) gives the complete formula for the all-order
single instanton contribution, in what follows we restrict ourselves to the
investigation of the weak field limit. In this limit, the leading instanton
induced term reads:

w
(1)
I (γ) = −g2λn−4

2

∫
dn(ρ)

∫

Cγ

dxµ

∫

Cγ

dyν

∫
dnk

(2π)n
Ãa

µ(k; ρ)Ãa
ν(−k; ρ)e−ik(x−y) .

(17)
By using the Fourier transform of the instanton field

Ãa
µ(k; ρ) = −2i

g
η±a

µσkσϕ̃
′(k2; ρ) , (18)

Eq. (17) can be written in the form of Eq. (4) with the instantonic analogue
of the function d1(z

2): d1(z
2) → dI

1(z
2), where

dI
1(z

2) = − 1

g2CF

∫
dn(ρ)DI(z

2; ρ, λ) = − λ4−n

g2CF

∫
dn(ρ)

dnk

(2π)n
e−ikz

(
2ϕ̃′(k2; ρ)

)2

(19)
Above, ϕ̃(k2; ρ) is the Fourier transform of the instanton profile function
ϕ(z2; ρ) and ϕ̃′(k2; ρ) is it’s derivative with respect to k2. Now using the
result (8) of the previous Section, we get the instanton contribution in the
form:

wI(γ; ε, λ) = (n − 2)h(γ)
∫

dn(ρ) DI(0; ε, λ, ρ) . (20)

Consider now the renormalization of the nonperturbative part for the
instanton field in the singular gauge, where the profile function is:

ϕ(u; ρ) =
ρ2

z2(z2 + ρ2)
. (21)

For the complete expression for DI(0; ε, λ, ρ), see [5]. Applying the renormal-
ization procedure as described in the previous Section, we find in the leading
order the instanton contribution to the Wilson loop:

w
(1)
I (γ, λ) = 1 + π2h(γ)

∫
dn(ρ) ρ4ln(ρλ) . (22)

In order to estimate the magnitude of the instanton induced effect we
consider the distribution function which has been suggested in [15] (and
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discussed in [13] in the framework of constrained instanton model) in order
to describe the lattice data [10]:

dn(ρ) =
dρ

ρ5
CNc

(
2π

αS(ρ)

)2Nc

exp

(
− 2π

αS(ρ)

)
exp

(
−2πσρ2

)
, (23)

where the numerical constant CNc
is determined by the number of colours

CNc
≈ 0.0015 and the string tension is accepted to be σ ≈ (0.44 GeV )2 [12,

15]. Then, using the one loop expression for the running coupling constant
we find the instanton contribution (22) in the form (in the distribution (23),
the slow varying logarithmic factor due to the power of the coupling αS is
assumed to be constant, and taken at the point of the mean instanton size
ρ̄):

w
(1)
I (γ, λ) = 1 + π2h(γ)

CNc
Γ(β0/2)

4

(
2π

αS(ρ̄)

)2Nc
(

ΛQCD√
2πσ

)β0

ln
λ2

2πσ
, (24)

where β0 is the first coefficient of perturbative β-function. The expression
(24) shows explicitly that the instantons yield the power-like corrections to
the perturbative result, what is expected from general consideration, e. g.,
from the renormalon analysis (see, e.g., [16]).

It is instructive to express the result (24) in terms of the mean instanton
size ρ̄ and the instanton density n̄ calculated directly from the distribution
(23). To compare the instanton induced and perturbative parts, we assume
that the factorization scale µ (which divides the soft and hard regions of mo-
menta in the factorized quark form factor) is of order of the inverse instanton
size µ ≈ ρ̄−1 ≈ 0.6 GeV . Then we write the total leading order contribution
to the Wilson loop expectation value in the form:

W (γ, ρ0λ) = 1 +
αS(ρ̄−1)

2π
CF h(γ)ln

(
ρ̄2λ2

)(
1 + K

S0π
2n̄ρ̄4

CF

)
, (25)

where S0 = 8π2

g2(ρ̄−1)
≈ 10 is the “classical enhancement” factor with the

renormalized coupling constant g(µ) at the energy scale µ ≈ ρ̄−1, and K ≈
0.74. The ratio of the instanton correction to the perturbative leading term
is about 0.5, what is estimated using the conventional value for the packing
fraction [17] π2n̄ρ̄4 ≈ 0.1. One can see using the main formula (24) that the
strong power suppression of the instanton part is partially compensated by
the large factor S2Nc+1

0 . This means that at the energy scale of order of ρ̄−1
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the magnitude of the instanton induced effects is comparable to the leading
perturbative part, and must be taken into account as well. It is possible
also to estimate numerically the two-loop order perturbative contribution
which appears to be of the same order as the instanton part [5]. Thus,
the complete consideration of the quark form factor at the low momentum
scale must include both the two-loop perturbative part and the leading order
instanton one, which appear to be of the same order of magnitude.

Expression (25) defines the first terms of the Wilson loop expansion in
gauge fields. On the basis of the exponentiation theorem [14] for the non-
abelian path-ordered exponentials it is well known that perturbative correc-
tions to the Sudakov form factor are exponentiated to high orders in the QCD
coupling constant. Let us describe briefly how the single instanton contribu-
tion is exponentiated in the small instanton density parameter, treating the
instanton vacuum as a dilute medium [18]. For details, see [5]. The gauge
field is taken to be the sum of individual instanton fields in the singular gauge,
(13, 21), with their centers at the points zj’s. Since the parametrization of
the loop integral along rays of the angle plays the role of the proper time, a
time-ordered series of instantons arises and has an effect on the Wilson loop.
Then, the expression is simplified when averaging over the gauge orientations
of instantons: the entire loop integral collapses to a product of traces,

W
(n)
I (γ) → lim

n→∞

n∏

j=1

w
(j)
I (γ). (26)

Since the individual instantons are considered to be decoupled in the dilute
medium, the total multiple instanton contribution to the vacuum average of
the Wilson operator simply exponentiates the all-order single instanton term
wI(γ) in (16), and one has

WI(γ) = lim
n→∞

{
1 +

1

n
wI(γ)

}n

= exp[wI(γ)]. (27)

Thus, we have proved that in the dilute regime, the full instanton con-
tribution to the quark form factor is given by the exponent of the all-order
single instanton result. The exponentiation arises due to taking into account
the many-instanton configurations effect.
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4 Conclusion

To summarize, within the instanton vacuum model we have developed an
approach which allows one to calculate the nonperturbative contributions to
the Wilson integrals over the infinite contour with a cusp that represent, e.
g., the classical trajectories of partons participating in hard collisions. We
have calculated the instanton contribution to the soft part of the quark form
factor, described in terms of the vacuum expectation value of the Wilson
loop for the contour of a special form (16). We have proved that in the
dilute regime, the full instanton contribution to the quark form factor is
given by the exponentiated all-order single instanton result, see (27). In
the weak-field limit, the instanton contribution to the soft part of the color
singlet quark form factor is found explicitly in terms of the instanton profile
function in the singular gauge. It is shown that the instanton induced effects
are of a power type (24), but nevertheless they are comparable in magnitude
to the perturbative ones at the scale of order of the inverse average size of
the instanton in the instanton vacuum, see (25).
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Fig. 1: The notations for the quark momenta and the total cusp-dependent
part of the Wilson loop integral for the quark form factor (a); the lead-
ing order contributions of the perturbative (b) and nonperturbative (single-
instanton) (c) fields; (d) the all-order single instanton result; (e) the expo-
nentiation of the single instanton result.
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