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Abstract

We assume that QCD can be effectively described with string-like variables.

The hadronic string is built over the chirally non-invariant QCD vacuum by means

of the boundary interaction with background chiral fields associated with pions.

By making this interaction compatible with the conformal symmetry of the string

and with the unitarity constraint on chiral fields we reconstruct the equations of

motion for the latter ones and furthermore recover the Lagrangian of non-linear

sigma model of pion interactions. The estimated chiral structural constants of

Gasser and Leutwyler fit well the phenomenological values.

1. Introduction

The history of attempts to describe the hadrons in the framework of a
string theory beyond or within QCD encompasses already more than 30 years
(see,[1]-[8] as well as the reviews [9]-[11]). The commonly cited arguments
to justify the stringy description of QCD are the dominance of planar gluon
diagrams in the large N limit[12] being interpreted as the world-sheet of a
string, the expansion in terms of surfaces built out of plaquettes in strong-
coupling lattice QCD[13], and the incarnation of Regge phenomenology[10]
within QCD[14].

There is a motivated agreement that in a certain kinematic regime the
Nambu-Goto or the Polyakov string action may be satisfactory. Here we
focus on low-energy properties of string-generated particle states and it is
known for a long time that the hadronic amplitudes derived from such type
of strings are not quite physically consistent. To illuminate their flaws we
recall the original Veneziano amplitude[1], which can be derived from Nambu-
Goto string and supposedly describes the scattering amplitude of four pions.
One can show that in this amplitude the scalar resonance is a tachyon and
the vector state (which we should identify with the rho particle) is massless.
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At last such an amplitude does not have the appropriate Adler zero, i.e. the
property that at s = t = 0 the pion scattering amplitude vanishes.

It is quite conceivable that the main reason for the presence of a tachyon
in the spectrum and the wrong chiral properties lies in a wrong choice of
the vacuum[15]. A possible way to take into account the non-perturbative
properties of the QCD vacuum was suggested in [16] and developed in [17].
Namely, one can assume that in QCD chiral symmetry breaking takes place
and the massless (in the chiral limit) pseudoscalar mesons form the back-
ground of the QCD vacuum, whereas other massive excitations are assembled
into a string. The massless pion fields can be collected in a unitary matrix
U(x) belonging to SU(2) group (here we consider non-strange Goldstone
mesons only). It describes excitations around the non-perturbative vacuum
breaking the chiral symmetry. From the string point of view U(x) is nothing
but a bunch of couplings involving the string variable xµ(τ, σ). It has to be
coupled to the boundary of the string where flavour is attached. Our goal is
to find a consistent string propagation in this non-perturbative background.

An essential property of string theory is conformal invariance. Since it
must hold when perturbing the string around any vacuum we demand the
new coupling to chiral fields, living on the boundary, to preserve it.

Thus our proposal is to introduce the general reparameterization-invariant
boundary interaction to chiral fields and derive all the divergences induced
by this interaction. We shall need additional dimensional operators in the
boundary action to renormalize divergences. From the condition of vanishing
β functions for U(x) the equations of motion for chiral fields are obtained in
the low-momentum (derivative) expansion. We consistently implement the
unitarity constraint on the chiral fields and locality of the chiral Lagrangian
and finally calculate the O(p4) terms of the Gasser and Leutwyler[18] effective
Lagrangian. A strikingly good correspondence with their phenomenological
values is found.

2. Pion interaction to the QCD string and diagrammar

The hadronic string in the conformal gauge is described by the following
conformal field theory action which has four dimensional Euclidean space-
time as target space

Wstr =
1

4πα′

∫

d2+εσ

(

ϕ

µ

)−ε

∂ixµ∂ixµ, (1)
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where for ε = 0 one takes xµ = xµ(τ, σ), −∞ < τ < ∞, 0 < σ < ∞,
i = τ, σ, µ = 1, ..., 4. The conformal factor ϕ(τ, σ) is introduced to restore
the conformal invariance in 2 + ε dimensions. The Regge trajectory slope
(related to the inverse string tension) is known to be universal α′ ' 0.9
GeV−2 [19].

We would like to couple in a chiral invariant manner the matrix in flavor
space U(x) containing the meson fields to the string degrees of freedom while
preserving general covariance in the two dimensional coordinates and con-
formal invariance under local scale transformations of the two-dimensional
metric tensor.

Since the string variable x does not contain any flavor dependence, we
introduce two dimensionless Grassmann variables (‘quarks’) living on the
boundary of the string sheet: ψL(τ), ψR(τ). They transform in the funda-
mental representation of the light flavor group (SU(2) in the present paper).
A local hermitean action Sb =

∫

dτLf is then introduced on the boundary
σ = 0 to describe the interaction with background chiral fields U(x(τ)) =
exp(iπ(x)/fπ), where the normalization scale is set to fπ ' 93MeV , the weak
pion decay constant.

The boundary Lagrangian is chosen to be reparameterization invariant
and in its minimal form reads

Lf =
1

2
i
(

ψ̄LU(1 − z)ψ̇R − ˙̄ψLU(1 + z)ψR

+ψ̄RU
+(1 + z∗)ψ̇L − ˙̄ψRU

+(1 − z∗)ψL

)

, (2)

herein and further on a dot implies a τ derivative: ψ̇ ≡ dψ/dτ .
A further restriction is obtained by requiring CP invariance,

U ↔ U+, ψL ↔ ψR. (3)

The above Lagrangian is CP symmetric for z = −z∗ = ia. The fulfillment
of this symmetry happens to be crucial to preserve conformal symmetry in
the presence of the added boundary interaction.

Now we expand the function U(x) in powers of the string coordinate field
xµ(τ) = x0µ + x̃µ(τ) around a constant x0,

U(x) = U(x0) + x̃µ(τ)∂µU(x0) +
1

2
x̃µ(τ)x̃ν(τ)∂µ∂νU(x0) + . . . . (4)
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and look for the potentially divergent one particle irreducible diagrams.The
two-fermion, N -boson vertex operators are generated by the expansion (4),
from the generating functional Zb = 〈exp(iSb)〉 and eq.(2). Each additional
loop comes with a power of α′. One can find a resemblance to the familiar
derivative expansion of chiral perturbation theory [18].

The free fermion propagator is

〈ψR(τ)ψ̄L(τ ′)〉 = 〈ψL(τ)ψ̄R(τ ′)〉† = U−1(x0)θ(τ − τ ′), (5)

if we impose CP symmetry for unitary chiral fields U(x).
The free boson propagator projected on the boundary is

〈xµ(τ)xν(τ
′)〉 = δµν∆(τ − τ ′) = −2δµνα

′ ln(|τ − τ ′|µ). (6)

The normalization of the string propagator is inferred [17] from the definition
of the kernel of the N-point tachyon amplitude for the open string [9]. In
dimensional regularization one adopts ∆(0) ∼ α′/ε and ∆′(0) = 0.

To implement the renormalization process we perform a loop (equivalent
to a derivative) expansion, proceed to determine the counterterms required
to make the theory finite and further on to impose a vanishing beta func-
tional for the coupling U(x) to implement the absence of conformal anomaly.

3. Renormalization at one and two loops

Using the above set of Feynman rules one arrives at the one-loop divergent
part of the propagator,

−θ(A−B)U−1δUU−1, δU ≡ ∆(0)

[

1

2
∂2

µU −
3 + z2

4
∂µUU

−1∂µU

]

. (7)

This divergence is eliminated by introducing an appropriate counterterm
U → U + δU . Conformal symmetry is restored (the beta-function is zero) if
the above contribution vanishes, δU = 0.

Let us find out for which value of z this variation of U is compatible with
its unitarity.

δ(UU+) = U · δU+ + δU · U+ = 0. (8)

A simple calculation shows that this takes place for z = ±i. The related
local classical action which has δU = 0 as equation of motion is

W (2) =
f 2

π

4

∫

d4xtr
[

∂µU∂µU
+
]

, (9)
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i.e. the well known non-linear sigma model of pion interactions.
We have thus found the chiral action induced by the QCD string. It

has all the required properties of locality, chiral symmetry and proper low
momentum behavior (Adler zero) and describes massless pions. However fπ,
the overall normalization scale, cannot be predicted from these arguments.

Before proceeding to a full two loop calculation we have to check whether
the minimal Lagrangian (2) is sufficient to renormalize also the vertices con-
taining the boson legs. It turns out that it is not.

To obtain the divergences for vertices with external boson lines we intro-
duce an external background boson field x̄µ and split xµ = x̄µ + ηµ. The free
propagator for the fluctuating field ηµ coincides with the one for xµ.

The total one-loop divergence in the vertex with two fermions and one
boson line can be represented by the following vertex operator in the La-
grangian

i

2

(

ψ̄LΦ(1)ψ̇R − ˙̄ψLΦ(2)ψR

)

+ h.c., Φ(1,2) ≡ x̄µ(τ)(1 ∓ z) [∂µ (δU) ∓ φµ] .

(10)
The terms proportional to derivatives of δU are automatically eliminated by
the renormalization of the one-loop propagator. But the part proportional to
φµ remains and to absorb these divergences new counterterms are required.
The latter ones can be parameterized with three bare constants g1 , g2 and
g3, which are real if the CP symmetry for z = −z∗ holds

∆Lbare =
i

8
(1 − z2)ψ̄L

(

(g1 − zg2)∂νU̇U
−1∂νU − (g1 + zg2)∂νUU

−1∂νU̇

+2zg3∂νUU
−1U̇U−1∂νU

)

ψR + h.c. (11)

Renormalization is accomplished by subtraction,

gi = gi,r − ∆(0). (12)

The constants gi,r are finite, but in principle scheme dependent. The coun-
terterms are of higher dimensionality than the original Lagrangian (2) and
the couplings gi are of dimension α′. Since (2) was the most general coupling
permitted by the symmetries of the model, one concludes that conformal
symmetry seems to be broken by these boundary couplings already at tree
level. However in spite of the fact that the new couplings are dimensionful, it
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turns out [17] that their contribution into the trace of the energy-momentum
tensor vanishes once the requirements of unitarity of U and CP invariance
are taken into account. Therefore conformal invariance is not broken at the
order we are working.

On the other hand the appearance of new vertices changes the fermion
propagator. One obtains from such terms the following contribution to the
propagator

θ(A− B)
1

16
∆(0)(1 − z2)U−1

{

2(g1,r − z2g2,r)∂ρUU
−1∂µ∂ρUU

−1∂µU

−(1 + z)(g1,r + zg2,r)∂ρUU
−1∂µUU

−1∂ρ∂µU

−(1 − z)(g1,r − zg2,r)∂ρ∂µUU
−1∂ρUU

−1∂µU

+4z2g3,r∂ρUU
−1∂µUU

−1∂ρUU
−1∂µU

}

U−1

≡ −θ(A− B)∆(0)U−1δ(4)UU−1, (13)

One should add this divergence to the one-loop result, thereby modifying the
U field renormalization and equations of motion

δ̄U = ∆(0)

[

1

2
∂2

µU −
3 + z2

4
∂µUU

−1∂µU + δ(4)U

]

= 0. (14)

This is one source of O(p4) terms and we shall see that there is another
contribution at two loops.

As to other vertices it can be proved [17] that any diagram with an
arbitrary number of external boson lines and two fermion lines, i.e. any vertex
of those generated by the perturbative expansion of (2) is rendered finite by
the previous counterterms. This completes the renormalization program at
one loop.

There are 10 two-loop one-particle irreducible diagrams which are ana-
lytically calculated in [17]. The divergences in the propagator consist of the
double divergent part, ∼ ∆2(0) and of the single divergent contributions,
∼ ∆(0). The substantial part of these divergences is fully renormalized by
performing the one-loop renormalization and taking into account the renor-
mgroup evolution.

Some single-pole divergences remain however. Namely, there are diver-
gences linear in ∆(0) which come from irreducible two-loop diagrams with
maximal number of vertices. These divergences appear to be
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−∆(0)U−1δ
(4)
2−lU

−1 ≡ c∆(0)
[

U−1∂ρUU
−1∂µUU

−1∂µUU
−1∂ρUU

−1−

−U−1∂ρUU
−1∂µUU

−1∂ρUU
−1∂µUU

−1
]

. (15)

with c = α′(1−z2)2/8 = α′/2 for z = ±i. This term survives after adding all
the counterterms. It must therefore modify the equation of motion (refeom4)

at the next order in the α′ expansion, δ(4)U → δ(4)U + δ
(4)
2−l. Its presence al-

lows for non zero solutions for the coupling constants gi and therefore for
nonzero values for the Gasser-Leutwyler O(p4) coefficients.

4. Local integrability of equations of motion

The equation of motion, δU = 0, can be obtained from the dimension-two
local action (9), involving a unitary matrix U(x), only for z = ±i. If the
four-derivative part of equations of motion can be derived from dimension-
four operators in a local effective Lagrangian then certain constraints are to
be imposed on constants gi,r.

Such a Lagrangian has only two terms compatible with the chiral sym-
metry,

L(4) = f 2
πtr

(

K1∂µU∂ρU
+∂µU∂ρU

+ +K2∂µU∂µU
+∂ρU∂ρU

+
)

. (16)

Other terms containing ∂2
µU are reduced to the set (16) with the help of the

dimension-two equations of motion.
Variation of the previous Lagrangian supposedly saturate the dimension-

four component of the equations of motion. Therefrom we identify this
parameterization of constants with the coupling constants arising from the
equations of motion (14) supplemented with (15) and after applying the
O(p2) equations of motion. Then one obtains the following set of coefficients
for the various chiral field structures

−2(2K1 +K2) =
1

16
(1 − z2)(1 ± z)(g1,r ± zg2,r);

−4K2 =
1

8
(1 − z2)(−g1,r + z2g2,r); 2[(1 − z2)K1 +K2] = −c;

−2z2K2 = 0; 4[K1 +K2] = −
1

4
(1 − z2)z2g3,r + c, (17)
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For z2 = −1 only one solution is possible,

K2 = 0, K1 = −
1

4
c = −

α′

8
; g1,r = −g2,r = −g3,r = 4c. (18)

Thus, comparing eq.(16) with the usual parameterization of the Gasser and
Leutwyler Lagrangian[18],

L1 =
1

2
L2 = −

1

4
L3 = −

1

2
K1f

2
π =

f 2
πα

′

16
. (19)

For α′ = 0.9 GeV−2 and fπ ' 93 MeV it yields L2 ' 0.9 · 10−3 which is quite
a satisfactory result[20].

The relation L1 = 1/2L2 = −1/4L3 was established earlier in bosoniza-
tion models [21] and in the chiral quark model[22] by means of a derivative
expansion of quark determinant. However at that time its possible connec-
tion with a string description of QCD was not recognized. The first attempt
to derive the chiral coefficients from the Veneziano-type dual amplitude was
undertaken in[23] where a similar relation was found but with different nu-
merical values for the Li. However the specific choice of dual amplitude in
[23] cannot be related to any known hadron string.

Another check comes from the compatibility of the unitarity of U and the
equations of motion at the two-loop level. It turns out that if one accepts
arbitrary real coefficients in the set of dimension-four operators then the only
solution compatible with the unitarity is given by the parameterization with
constants K1 and K2.

In our talk we have reported on a simplified model of the QCD string.
Requiring of its conformal invariance around a chirally non-invariant vacuum
leads to the Gasser and Leutwyler lagrangian. However the bosonic string
action used here does not prevent large Euclidean world sheets from crum-
pling [24]. It does not also describe correctly the high-temperature behavior
of large N QCD [25]. To correct it, a QCD induced string must be modified
[24, 26] including operators breaking manifestly conformal symmetry on the
world-sheet for large strings. Nevertheless we are concerned here with the
low-energy string properties and therefore do not expect that the strategy
and technique to derive the chiral field action needs any significant changes
to be adjusted to a modified QCD string action.
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We have restricted ourselves here to the SU(2) global flavor group. In
this case only parity-even terms in the equations of motion can be revealed
from the simple fermion Lagrangian (2) and to obtain the parity-odd WZW
lagrangian relevant for the case of three flavors one has to extend the bound-
ary fermion action supplementing one-dimensional fermions with true spinor
degrees of freedom.
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