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1 Introduction

At present the models of quark bags turn out to be one of the most pers-
pective approaches to the study of the low-energy structure of baryons. The
most promising results have been obtained within so called hybrid chiral bag
models (HCBM, [1-4]). In HCBM free and massless quarks and gluons are
confined in a chirally invariant way in a spatial volume, surrounded by the
colorless purely mesonic phase. Mesons are described by some nonlinear the-
ory like the Skyrme model ([5-8]). However, in such 2-phase HCBM there
is no place for massive constituent quarks, whose concept is one of the cor-
nerstones in the hadronic spectroscopy ([9-12]). Thus the most attractive
situation should be the one, where the initially free and almost massless cur-
rent quarks at first transmute by interaction into massive constituent quarks
with the same quantum numbers, and only afterwards the purely mesonic
colorless phase emerges.
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2 Intermediate phase

Fig. 1. Bag with intermediate phase
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The first step towards such a version of the bag is made in a 3-phase chiral
model ([13]), where an additional intermediate phase of interacting quarks
and mesons is introduced. Asymptotically free massless quarks live in the
first (inner) phase. Second (intermediate) phase contains constituent quarks
acquiring effective mass due to the chirally invariant interaction with the
meson fields. Hadronization takes place in the third (outer) phase where
the quark degrees of freedom are completely suppressed, while a nonlinear
dynamics of meson fields leads to the appearance of the c-number boson
condensate in a form of a classical soliton solution. This soliton solution
keeps up the topological nature of the model as well as the relevant quantum
numbers.

3 3-phase HCBM in (1+1)D

We consider a toy model of such kind in (1+1)D with one-flavor fermion field
as quarks, and real scalar field as mesons. For this model the self-consistent
solutions with different values of topological charge (namely 1, 2, and 0)
has been found ([13-15]). For these solutions renormalized total energy of
the bag can be studied as a function of its geometry and topological charge.
It has been shown that for non-zero topological charge there exists a set
of configurations being the local minima of the total energy of the bag and
containing all the three phases, while in the nontopological case the minimum
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of the bag’s energy corresponds to the asymptotic freedom phase of vanishing
size.

The model is described by the shown Lagrangian:

L = ψ̄i∂̂ψ +
(∂µϕ)2

2
−
m2

0ϕ
2

2
θI −

M

2

[

ψ̄, eiγ5ϕψ
]

−

θII

−
M0

2

[

ψ̄, eiγ5ϕψ
]

−

θIII − V (ϕ)θIII. (1)

Theta-functions with indices I, II and III select the corresponding region.
First and second terms are standard kinetic terms for fermion and scalar
fields. It must be noted that unlike other models kinetic terms and therefore
fields exist in a whole space though they may be suppressed in some regions
in terms of physical observables. Third term assigns mass m0 to the scalar
field in the inner region. Forth and fifth terms describe chirally invariant
interaction between fermions and mesons with the constant M and M0 in
the regions II and III correspondently.

Last term is a non-linear self-interaction potential of the scalar field in the
outer region. It is even and leads to soliton-like solutions. Thus we suppose
it have at least two stationary points (like well-known potential ϕ4) at values
of ϕ equal to ±π. Then the scalar field could be either odd (the topological
charge is nonzero) or even (null in the simpliest case). Various configurations
are shown on the figure 2.

Fig. 2. Scalar field asymptotics

6

-
0 x

ϕ

q

r

π

r

−π

We consider the topological case at first and later we’ll shortly discuss non-
topological one. The soliton is always approaching quadratic stationary val-
ues exponentially:

ϕ(x) ∼ ±π
(

1 − e−m (|x| − x0)
)

. (2)

m here is a second-order derivation of potential V in the stationary points.

m2 =
∂2V

∂ϕ2

∣

∣

∣

∣

ϕ = ±π
. (3)
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To form the bag we suppose interaction constant M0 and scalar field mass
m0 to be very large, that dynamically suppresses fermions in the outer re-
gion and meson field in the inner region. According to the general approach
accepted in HCBM, the boson field is treated in the mean-field approxima-
tion, i.e. it is assumed to be a c-number field being a stationary classical
background for fermions.

4 Self-consistent solution

The essential feature of this model is that the equations of motion in the
intermediate region possess simple and physically meaningful solution. In
order to obtain it let us assume the linear behavior for the scalar field ϕ in
the intermediate region:

ϕ′ = 2λ = const. (4)

Then the Skyrme rotation

ψ = e−iγ5ϕ/2χ (5)

transforms the fermion equations in the intermediate region into the equa-
tions for free fermions χ with mass M , and eigenvalues ν = ω − λ:

x ∈ I :

{

i∂̂χ = 0,
ϕ = 0;

x ∈ II :

{

i
(

∂̂ − γ0λ−M
)

χ = 0,

ϕ′′ = M · 〈J5〉 ;

x ∈ III :

{

χ = 0,
ϕ′′ = ∂V/∂ϕ.

(6)

So the fermions being massless in the inner region, acquire the mass M in the
region II due to the coupling to the field ϕ, whence the intermediate phase
describing massive quasifree constituent quarks emerges (see fig. 3).

Fig. 3. Fermion mass profile
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5 Condition on bag’s geometry

Right-hand side of the equation of motion for the field ϕ in the intermediate
region is proportional to the vacuum expectation value for the C-odd chiral
current J5:

ϕ′′ = M · 〈J5〉 . (7)

Assuming every level is either occuped or empty this chiral current can be
found from the following expression:

〈J5〉 =

(

1
2

∑

n<0

−1
2

∑

n>0

)

χ̄nγ5χn. (8)

where the first summation includes occuped levels and the second one inclu-
des unoccuped ones.

Fig. 4. Energy levels
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The equation for the fermion field χ in the intermediate region contains the
important symmetry changing the sign of eigenvalues ν and leaving the chiral
current additive χ̄γ5χ intact. Thus if there is a pair with opposite ν for each
energy level (see fig. 4), additives of the pair will cancel each other in the
expression (8) for J5, and the chiral current will vanish; linear function will
satisfy the equation of motion (7), and our solution will be self-consistent.

However, fermion equation in the inner region generally does not obeys
this symmetry. Hence we receive an additional condition on the bag geometry
for spectrum to be symmetrical:

4λx1 = πs, s = 2, 4, 6 . . . , (9)

where 2x1 is the length of the inner region. Spectra corresponding to the odd
values of s although symmetrical include a single level with zero value of ν
for which there’s no pair, so we consider only the even values of s here. Note
that for large enough λ some levels with positive ω must be occuped for the
cancelation of the chiral current.
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Fig. 5. Scalar field profile
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6 Solution keypoints

Thus we obtained a series of self-consistent solutions. There are the following
keypoints that make these solutions meaningful. The first is the finiteness of
the intermediate region size, because for an infinite region the linear solution
would be unacceptable. In our case, however, the size of the intermediate
region is always finite by construction, while the boson field acquires the
solitonic behavior in the outer region due to the self-interaction. Here the
following circumstance manifests again: in (1+1)D the chiral coupling itself
cannot cause the solitonic behavior of the scalar field by virtue of the effects of
fermion-vacuum polarization only, i.e. without any additional self-interaction
of the bosons.

The second point is the discreteness and the symmetry of the fermionic
spectrum, what leads in turn to a reasonable method for the calculation of
the chiral current avarage over the filled Dirac’s sea, as well as of other C-odd
observables like the total fermion number. After all, in this case we consider
the boson field to be continuous everywhere and so it is topologically equiva-
lent to that odd soliton, which would take place due to the self-interaction in
the absence of fermions. So a topological number of the boson field doesn’t
depend on the existence and sizes of the spatial regions containing fermions
(I ∪ II). On the other hand, the baryon number of the hybrid bag is, by
definition, the sum of the topological charge of the boson soliton and the
fermion number of the bag interior. In our case the latter is null (for the
ground state), hence the baryon number of the bag is determined by the
topological charge of the boson field only and doesn’t depend on the sizes
of the regions containing fermions, what meets the general requirements for
hybrid models. Additional details concerning the status of this solution can
be found in publications [13-15].
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The third point is the required absense of level with zero value of ν because
this non-degenerate level prevents the cancelation of the chiral current. In
our framework only configurations with even values of s do not contain this
level and therefore self-consistent. However, other bags exist with only odd
values of s allowed instead of even.

7 Bag energy as function of it’s size

Because the additional condition (9) must hold, and we expect the scalar
field to pass smoothly into it’s asymptotics (2). we have only one geometrical
degree of freedom left: size of the bag compared to the fermion mass M . We
denote it as ρ:

ρ = 2x2M , (10)

and also introduce dimentionless ratio µ of the two mass parameters of the
model:

µ = m/2M , (11)

The value of µ can be chosen as ratio of masses of the physical mesons
and constituent quarks; we take the value of 1/4. Now we can examine a
dependence of a total energy of the bag Ebag on it’s size ρ. For the model to
be meaningful the energy must have a distinct minimum.

The total energy of the bag is the sum of the bosonic field energy Eϕ and
the fermionic contribution Eψ:

Ebag = Eϕ + Eψ. (12)

For the total energy of the boson field with the help of the virial theorem
one finds the following expression:

Eϕ = mπ2 2s+ 1

µρ+ 1
. (13)

This value is decreasing as the size of the bag grows thus the soliton itself
is non-stable in the absense of the fermion fields. The C-odd expression for
the total energy of the fermion field reads as shown:

Eψ =

(

1
2

∑

n<0

−1
2

∑

n>0

)

ωn. (14)
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Energy eigenvalues ωn can be obtained numerically. We must also apply a
renormalization procedure to this sum (14), though I will not go into details
in this report.

Fig. 6. Total bag energy in units of M
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Numerical results for different values of s are shown on the figure 6. It can
be seen that for each value of s there is a minimum in total bag energy.
The size and the energy of the solution determined from the minimum of
energy grows continuously for increasing s, what suggests the interpretation
of configurations with s > 2 as excited states of the bag.

8 Non-topological case

Fig. 7. Scalar field profile
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Now a brief description of the non-topological case. The scalar field profile
is shown on the figure 7. In our framework such configurations correspond
to mesons. This case is different from the previous one in the following
points: (1) there’re no additional conditions on bag’s geometry and (2) the
chiral current never vanishes. Because of the later point calculations become
much more numerical, though linear function turns out to be a very good
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approximation to exact solution in the interior region. Because of the lack
of additional conditions we’ve got two degrees of freedom now: size of the
interior region and size of the intermediate region. We denote correspondent
dimentionless ratios as α and β.

Fig. 8. Total bag energy

Total bag energy with the same value of µ as a function of α and β is shown
on the figure 8. It can be seen that minimum of energy corresponds to a
finite size of intermediate region and vanishing size of inner region. So for
the bags with zero topological charge the considered 3-phase model predicts,
that the main role should be played by the intermediate phase of constituent
quarks, what is quite consistent with semi-phenomenological quark models
of mesons.

9 Conclusion

This work was aimed at the construction of a 3-phase version of a hybrid
chiral bag with both current and constituent quarks. Our results show, that
such a model can be formulated in a quite consistent fashion and in the topo-
logical case leads to the series of configurations with reasonable behaviour
of the total bag’s energy as a function of its size, which takes the form of
an infinitely deep potential well with a distinct minimum, whereas in the
non-topological case the minimal energy of the bag corresponds to the con-
figuration, where the phase of asymptotic freedom disappears.
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