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Abstract

It is shown that the temperature derivatives of the anomalous and normal
(quark massive term) contributions to the trace of the energy-momentum
tensor in QCD are equal to each other in the low temperature region. The
physical consequences of this relation are discussed.

1. The low-energy theorems, playing an important role in the understand-
ing of the vacuum state properties in quantum field theory, were discovered
almost at the same time as quantum field methods have been applied in
particle physics (see, for example, Low theorems [1]). In QCD, they were ob-
tained in the beginning of eighties [2]. The QCD low-energy theorems, being
derived from the very general symmetry considerations and not depending
on the details of confinement mechanism, sometimes give information which
is not easy to obtain in another way. Also, they can be used as ”physically
sensible” restrictions in the constructing of effective theories. Recently, they
were generalized to finite temperature and chemical potential case [3, 4].
These theorems were used for investigation of QCD vacuum phase structure
in a magnetic field [5] and at finite temperature [6].

The investigation of the vacuum state behavior under the influence of var-
ious external factors is known to be one of the central problems of quantum

∗e-mail: agasian@heron.itep.ru

1



field theory. In the realm of strong interactions (QCD) the main factors are
the temperature and the baryon density. At low temperatures, T < Tc ( Tc–
temperature of the ”hadron–quark-gluon” phase transition ), the dynamics
of QCD is essentially nonperturbative and is characterized by confinement
and spontaneous breaking of chiral symmetry (SBCS). In the hadronic phase
the partition function of the system is dominated by the contribution of
the lightest particles in the physical spectrum. It is well known that due
to the smallness of pion mass as compared to the typical scale of strong
interactions, the pion plays a special role among other strongly-interacting
particles. Therefore for many problems of QCD at zero temperature the chi-
ral limit, Mπ → 0, is an appropriate one. On the other hand a new mass
scale emerges in the physics of QCD phase transitions, namely the critical
transition temperature Tc. Numerically the critical transition temperature
turns out to be close to the pion mass, Tc ≈ Mπ

1. However hadron states
heavier than pion have masses several times larger than Tc and therefore their
contribution to the thermodynamic quantities is damped by Boltzmann fac-
tor ∼ exp{−Mhadr/T}. Thus the thermodynamics of the low temperature
hadron phase, T <∼ Mπ, is described basically in terms of the thermal exci-
tations of relativistic massive pions.

In this talk I will discuss the low temperature relation for the trace of the
energy-momentum tensor in QCD with two light quarks [8]. This relation is
based on the general dimensional and renormalization-group properties of the
QCD partition function and dominating role of the pion thermal exitations in
the hadronic phase. The physical consequences of this relation are discussed
as well as the possibilities to use it in the lattice studies of the QCD at finite
temperature.

2. For non-zero quark mass (mq 6= 0) the scale invariance is broken al-
ready at the classical level. Therefore the pion thermal excitations would
change, even in the ideal gas approximation, the value of the gluon con-
densate with increasing temperature 2. To determine this dependence use
will be made of the general renormalization and scale properties of the QCD
partition function.

The QCD Euclidean partition function with two quark flavors has the

1The deconfining phase transition temperature is the one obtained in lattice calculations
Tc(Nf = 2) ' 173 MeV and Tc(Nf = 3) ' 154 MeV [7].

2At zero quark mass the gas of massless noninteracting pions is obviously scale-invariant
and therefore does not contribute to the trace of the energy-momentum tensor and corre-
spondingly to the gluon condensate 〈(Ga

µν )2〉.
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following form (β = 1/T )

Z =
∫

[DA]
∏

q=u,d

[Dq̄][Dq] exp

{

−
∫ β

0
dx4

∫

V
d3xL

}

. (1)

Here the QCD Lagrangian is

L =
1

4g2
0

(Ga
µν)

2 +
∑

q=u,d

q̄[γµ(∂µ − i
λa

2
Aa

µ) + m0q]q, (2)

where the gauge fixing and ghost terms have been omitted. The free energy
density is given by the relation βV F (T, m0u, m0d) = − ln Z. Eq. (1) yields
the following expression for the gluon condensate (〈G2〉 ≡ 〈(Ga

µν)
2〉)

〈G2〉(T, m0u, m0d) = 4
∂F

∂(1/g2
0)

. (3)

The system described by the partition function (1) is characterized by the set
of dimensionful parameters M, T, m0q(M) and dimensionless charge g2

0(M),
where M is the ultraviolet cutoff. On the other hand one can consider the
renormalized free energy FR and by using the dimensional and renormalization-
group properties of FR recast (3) into the form containing derivatives with
respect to the physical parameter T and renormalized masses mq.

The phenomenon of dimensional transmutation results in the appearance
of a nonperturbative dimensionful parameter

Λ = M exp

{

∫

∞

αs(M)

dαs

β(αs)

}

, (4)

where αs = g2
0/4π, and β(αs) = dαs(M)/d lnM is the Gell-Mann-Low func-

tion. Furthermore, as it is well known, the quark mass has anomalous di-
mension and depends on the scale M . The renormalization -group equation
for m0(M), the running mass, is d lnm0/d lnM = −γm and we use the MS
scheme for which β and γm are independent of the quark mass [4, 9]. Upon
integration the renormalization-group invariant mass is given by

mq = moq(M) exp{
∫ αs(M) γmq

(αs)

β(αs)
dαs} , (5)

where the indefinite integral is evaluated at αs(M). Next we note that since
free energy is renormalization-group invariant quantity its anomalous dimen-
sion is zero. Thus FR has only a normal (canonical) dimension equal to 4.
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Making use of the renorm-invariance of Λ, one can write in the most general
form

FR = Λ4f(
T

Λ
,
mu

Λ
,
md

Λ
) , (6)

where f is some function. From (4),(5) and (6) one gets

∂FR

∂(1/g2
0)

=
∂FR

∂Λ

∂Λ

∂(1/g2
0)

+
∑

q

∂FR

∂mq

∂mq

∂(1/g2
0)

, (7)

∂mq

∂(1/g2
0)

= −4πα2
smq

γmq
(αs)

β(αs)
. (8)

With the account of (3) the gluon condensate is given by

〈G2〉(T, mu, md) =
16πα2

s

β(αs)
(4 − T

∂

∂T
−

∑

q

(1 + γmq
)mq

∂

∂mq

)FR. (9)

It is convenient to choose such a large scale that one can take the lowest order
expressions, β(αs) → −bα2

s/2π, where b = (11Nc − 2Nf )/3 and 1 + γm → 1.
Thus, we have the following equations for condensates

〈G2〉(T ) = −
32π2

b
(4 − T

∂

∂T
−

∑

q

mq

∂

∂mq

)FR ≡ −D̂FR , (10)

〈q̄q〉(T ) =
∂FR

∂mq

. (11)

3. In the hadronic phase the effective pressure from which one can extract
the condensates 〈q̄q〉(T ) and 〈G2〉(T ) using the general relations (10) and (11)
has the form

Peff(T ) = −εvac + Ph(T ), (12)

where εvac = 1
4
〈θµµ〉 is the nonperturbative vacuum energy density at T = 0

and

〈θµµ〉 = −
b

32π2
〈G2〉 +

∑

q=u,d

mq〈q̄q〉 (13)

is the trace of the energy-momentum tensor. In Eq.(12) Ph(T ) is the ther-
mal hadrons pressure. The quark and gluon condensates are given by the
equations

〈q̄q〉(T ) = −
∂Peff

∂mq

, (14)
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〈G2〉(T ) = D̂Peff , (15)

where the operator D̂ is defined by the relation (10)

D̂ =
32π2

b
(4 − T

∂

∂T
−

∑

q

mq

∂

∂mq

) . (16)

Consider the T = 0 case. One can use the low energy theorem for the
derivative of the gluon condensate with respect to the quark mass [2]

∂

∂mq

〈G2〉 =
∫

d4x〈G2(0)q̄q(x)〉 = −
96π2

b
〈q̄q〉 + O(mq), (17)

where O(mq) stands for the terms linear in light quark masses.Then one
arrives at the following relation

∂εvac

∂mq

= −
b

128π2

∂

∂mq

〈G2〉 +
1

4
〈q̄q〉 =

3

4
〈q̄q〉 +

1

4
〈q̄q〉 = 〈q̄q〉. (18)

Note that three fourths of the quark condensate stem from the gluon part of
the nonperturbative vacuum energy density. Along the same lines one arrives
at the expression for the gluon condensate

−D̂εvac = 〈G2〉. (19)

In order to get the dependence of the quark and gluon condensates upon T
use is made of the Gell-Mann- Oakes-Renner (GMOR) relation (Σ = |〈ūu〉| =
|〈d̄d〉|)

F 2
πM2

π = −
1

2
(mu + md)〈ūu + d̄d〉 = (mu + md)Σ . (20)

Then we can find the following relations

∂

∂mq

=
Σ

F 2
π

∂

∂M2
π

, (21)

∑

q

mq

∂

∂mq

= (mu + md)
Σ

F 2
π

∂

∂M2
π

= M2
π

∂

∂M2
π

, (22)

D̂ =
32π2

b
(4 − T

∂

∂T
− M2

π

∂

∂M2
π

) . (23)

Within the described above framework one can derive the thermodynamic
relation for the quantum anomaly in the trace of the energy-momentum
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tensor of QCD. At low temperature the main contribution to the pressure
comes from thermal excitations of massive pions. The general expression for
the pressure reads

Pπ = T 4ϕ(Mπ/T ) , (24)

where ϕ is a function of the ratio Mπ/T . Then the following relation is valid

(4 − T
∂

∂T
− M2

π

∂

∂M2
π

)Pπ = M2
π

∂Pπ

∂M2
π

. (25)

With the account of (14,15), (18,22) and (25) one gets

∆〈q̄q〉 = −
∂Pπ

∂mq

, ∆〈G2〉 =
32π2

b
M2

π

∂Pπ

∂M2
π

, (26)

where ∆〈q̄q〉 = 〈q̄q〉T − 〈q̄q〉 and ∆〈G2〉 = 〈G2〉T − 〈G2〉. In view of (22) one
can recast (26) in the form

∆〈G2〉 = −
32π2

b

∑

q

mq∆〈q̄q〉 . (27)

Let us divide both sides of (27) by ∆T and take the limit ∆T → 0. This
yields

∂〈G2〉

∂T
= −

32π2

b

∑

q

mq

∂〈q̄q〉

∂T
. (28)

This can be rewritten as [10]

∂〈θg
µµ〉

∂T
=

∂〈θq
µµ〉

∂T
, (29)

where 〈θq
µµ〉 =

∑

mq〈q̄q〉 and 〈θg
µµ〉 = (β(αs)/16πα2

s)〈G
2〉 are correspondingly

the quark and gluon contributions to the trace of the energy-momentum
tensor. Note that in deriving this result use was made of the low energy
GMOR relation, and therefore the thermodynamic relation (28,29) is valid
in the light quark theory. Thus in the low temperature region when the
excitations of massive hadrons and interactions of pions can be neglected,
equation (29) becomes a rigorous QCD theorem.

As it was mentioned above the pion plays an exceptional role in thermo-
dynamics of QCD due to the fact that its mass is numerically close to the
phase transition temperature while the masses of heavier hadrons are several
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times larger than Tc. This was the reason we did not consider the role of
massive states in the low temperature phase. This question was discussed in
detail in [11]. It was shown there that at low temperatures, the contribution
to 〈q̄q〉 generated by the massive states is very small, less than 5% if T is be-
low 100 MeV. At T = 150 MeV, this contribution is of the order of 10%. The
influence of thermal excitations of massive hadrons on the properties of the
gluon and quark condensates in the framework of the conformal-nonlinear σ-
model was also studied in detail in [12].

4. It was shown that the temperature derivatives of the anomalous
and normal (quark massive term) contributions to the trace of the energy-
momentum tensor in QCD with light quarks are equal to each other in the
low temperature region.

Let us consider some physical consequences and possible applications of
this relation. To this end we introduce the function

δθ(T ) =
∂

∂T
〈θg

µµ − θq
µµ〉 . (30)

As it was stated above, the function δθ(T ) at low temperatures is, with good
accuracy, close to zero. In the vicinity and at the phase transition point, i.e.
in the region of nonperturbative vacuum reconstruction this function changes
drastically. To see it, we first consider pure gluodynamics. It was shown in
[13] using the effective dilaton Lagrangian, that gluon condensate decreases
very weakly with the increase of temperature, up to phase transition point.
This result is physically transparent and is the consequence of Boltzmann
suppression of thermal glueball excitations in the confining phase.

Further, in [14] the dynamical picture of deconfinement was suggested
based on the reconstruction of the nonperturbative gluonic vacuum. Namely,
confining and deconfining phases according to [14] differ first of all in the vac-
uum fields, i.e., in the value of the gluon condensate and in the gluonic field
correlators. It was argued in [14] that color-magnetic (CM) correlators and
their contribution to the condensate are kept intact across the temperature
phase transition, while the confining color-electric (CE) part abruptly dis-
appears above Tc. Furthermore, there exist numerical lattice measurements
of field correlators near the critical transition temperature Tc, made by the
Pisa group [15], where both CE and CM correlators are found with good
accuracy. These data clearly demonstrate the strong suppression of CE com-
ponent above Tc and persistence of CM components. Thus, the function
δθ(T )GD = ∂〈θg

µµ〉/∂T can be presented as a δ-function smeared around the
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critical point Tc with the width ∼ ∆T which defines the fluctuation region
of phase transition.

Similar, but more complicated and interesting situation takes place in
the theory with quarks. The function δθ(T ) contains the quark term, pro-
portional to the chiral phase transition order parameter 〈q̄q〉(T ). So it is
interesting to check the relation (29) and to study the behavior of the func-
tion δθ(T ) in the lattice QCD at finite temperature. It would allow both
to test the nonperturbative QCD vacuum at the low temperatures in the
confining phase and to extract additional information on the thermal phase
transitions in QCD.
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