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Abstract

In this report we review1 a structure of cubic Vacuum Superstring Field
Theory and known solutions to its equation of motion.

1 Introduction

During the last two years the bosonic vacuum string field theory (VSFT) pro-
posed to describe physics around the bosonic tachyon vacuum [4] has been inves-
tigated in many papers [5]-[11]. VSFT action has the same form as the original
Witten SFT action [12], but with a new differential operator Q (for a review of
SFT see [13, 14, 15] and references therein). The absence of physical open string
excitations around the tachyon vacuum [16, 17] supports a suggestion [4] that
after some field redefinition Q can be written as a pure ghost operator. Under
this assumption solutions to VSFT equation of motion admit a factorized form
with the projector-like matter part.

A generalization of VSFT to superstrings has been discussed in [4] and more
recently in [1]-[3],[11] and [18] in the context of cubic SSFT [19, 20] and non-
polynomial SSFT [21], respectively. Open fermionic string in the NSR formalizm
has a tachyon in the GSO− sector that leads to a classical instability of the per-
turbative vacuum in the theory without supersymmetry. It has been proposed
[16] to interpret the tachyon condensation in the GSO− sector of the NS string
as a decay of unstable non-BPS D9-brane.

In this note we consider a construction of cubic Vacuum Superstring field
Theory and solution to its equation of motion. Actually, this means a construc-
tion of a new BRST charge while the structure of the action will be the same.
This question is considered in Section 2. In Section 3 we consider solution to the
matter part of the fermionic sector of the NS string, the NS sliver. In Section 4
NS ghost sliver is considered.

2 Cubic Vacuum String Field Theory on a non-

BPS D-brane

To describe the open string states living on a single non-BPS D-brane one has
to consider GSO± states [16]. GSO− states are Grassmann even, while GSO+
states are Grassmann odd. The unique (up to rescaling of the fields) gauge

1This report is based on the papers [1]-[3].
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invariant cubic action unifying GSO+ and GSO− sectors is [22]

S[A+, A−] =
1

g2
o

[

1

2
〈〈Y−2|A+, QBA+〉〉 +

1

3
〈〈Y−2|A+, A+, A+〉〉

+
1

2
〈〈Y−2|A−, QBA−〉〉 − 〈〈Y−2|A+, A−, A−〉〉

]

.

(1)

Here the factors before the odd brackets are fixed by the constraint of gauge
invariance, that is specified below, and reality of the string fields A±. Variation
of this action with respect to A+, A− yields the following equations of motion
(see [22] for details)

QBA± +A+ ? A± −A− ? A∓ = 0 (2)

The action (1) is invariant under the gauge transformations

δA± = QBΛ± + [A±,Λ+] + {A∓,Λ−}

where [ , ] ({ , }) denotes ?-(anti)commutator and Λ± are gauge parameters.
The action (1) can be rewritten in the matrix form as

S[Â] =
1

2g2
o

Tr

[

1

2
〈〈Y−2|Â, Q̂BÂ〉〉 +

1

3
〈〈Y−2|Â, Â, Â〉〉

]

, (3)

Q̂B = QB ⊗ a, Ŷ−2 = Y−2 ⊗ a, Â = A+ ⊗ a + A− ⊗ b and a and b are 2 × 2
matrices such that a2 = 1, b2 = −1 and {a, b} = 0.

The action (3) is invariant under GSO symmetry transformation given by
Â 7→ ((−1)F ⊗ 1)Â, and twist symmetry transformation Ω which action on the
string field is given via conformal transformation M(z) = e−πiz. One can check
that the BRST charge Q̂B commutes with (−1)F ⊗ 1 and Ω.

Let Â0 be a solution to the equations (2). A shift of a string field Â = Â0+Â
yields the following form of the action (3)

S[Â0, Â] = S[Â0] +
1

2g2
o

Tr

[

1

2
〈〈Y−2|Â, Q̂Â〉〉 +

1

3
〈〈Y−2|Â, Â, Â〉〉

]

, (4)

where Q̂ is “a new BRST charge” of the form

Q̂ = Q̂B + {Â0, ·}. (5)

Further we will refer to Q̂ as a kinetic operator. One can check that the equation
Q̂2 = 0 yields the equation of motion for the field Â0 and therefore Q̂ is nilpotent.

The kinetic operator can be written in the form

Q̂ = Qodd ⊗ a+Qeven ⊗ b. (6)

The nilpotency of the Q̂ yields the following identities for the operators Qodd

and Qeven

Q2
odd

−Q2
even

= 0 and [Qodd, Qeven] = 0. (7)
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Equations of motion following from the VSFT action (4) have the same form
as for the action (3) but with the shifted BRST operator Q̂. In components these
equations are

QoddA± −QevenA∓ + A+ ?A± −A− ?A∓ = 0. (8)

According to Sen conjectures [16] the solution Â0 represents the vacuum
without open string excitations2, and therefore the cohomology of the kinetic
operator Q̂ must be zero.

In proposing a simple form of the vacuum SSFT action, we have in mind
field redefinition, which preserves the form of the cubic action, but simplifies
the expression for the kinetic operator Q̂. By an appropriate field redefinition

Û = Ueven ⊗ 1 + Uodd ⊗ ab (9a)

we will assume a ?-algebra homomorphism Û(Â ? B̂) = (Û Â) ? (Û B̂), which
satisfies two additional conditions:

Tr

∫ ′

ÛÂ = Tr

∫ ′

Â and an existance of Û−1 : Û Û−1 = 1. (9b)

The ˆ in the expressions for the field redefinition Û is very important since this
transformation acts in both GSO+ and GSO− sectors. Using (9) one can check
that after the field redefinition Â 7→ ÛÂ the kinetic operator transforms into
Q̂ = Û−1Q̂Û . Note that the transformation Û is highly non-trivial and mixes
GSO+ and GSO− sectors.

Consider the standard BRST charge in the superconformal field theory

QB =
1

2πi

∮

dζ
[

c(TB + Tφ + Tηξ +
1

2
Tbc) − ηeφTF +

1

4
b∂ηηe2φ

]

. (10)

One can check that after the homogenous field redefinition [23]

U = e−R, where R =
1

2πi

∮

dζ
[

cTF e
−φeχ +

1

4
∂(e−2φ)e2χc∂c

]

(11)

the BRST charge (10) takes the form

Q = U−1QBU =
1

2πi

∮

dζ bγ2(ζ). (12)

Following the idea of the paper [4], which is based on Sen conjectures, gauge
invariance and algebraic properties of the BRST charge, we require Q̂ to satisfy
the following properties:

1. Q̂ = Qodd ⊗ a+ Qeven ⊗ b;

2This conjecture has been checked for the non-BPS brane decay only at the first non-trivial
level [15].
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2. Both Qodd and Qeven have superghost number equal to one, but Qodd is
Grassmann odd, while Qeven is Grassmann even;

3. Q̂ is a nilpotent operator, that in components means the identities

Q2
odd −Q2

even = 0 and [Qodd,Qeven] = 0;

4. Q̂(Â?B̂) = (Q̂Â)?B̂+(−1)|Â|Â?(Q̂B̂), In particular, this identity means
that operators Qodd and Qeven also satisfy the Leibnitz rule;

5. Tr
∫ ′ Q̂(Â ? B̂) = 0;

6. The operator Q̂ must be universal, what means that it has to be written
without reference to the brane boundary CFT;

7. The operator Q̂ must have vanishing cohomology;

8. [Ŷ−2, Q̂] = 0 or {Ŷ−2, Q̂} = 0. We need this axiom to relate the ax-
iom 5 with the fact that Q̂ annihilates the identity |I〉. Therefore we can
have several variations of this axiom and in general we only need some-
thing like the following

QoddY−2 ± Y−2Qodd = 0 and QevenY−2 ± Y−2Qeven = 0;

Plus/minus in these formulae can be chosen independently.

9. Q̂ is a hermitian operator, which means that both Qodd and Qeven are
hermitian ones.

Since A0,+ 6= 0 and A0,− 6= 0 we believe that after the field redefinition both
charges Qodd and Qeven are non zero.

The following ghost kinetic operator satisfies all above axioms [1, 11]

Qodd =
µ2

4i

[

c(i) − c(−i)
]

+
1

2πi

∮

b(z)γ2(z)dz, (13a)

Q+
even

=
µ

2i

[

γ(i) − γ(−i)
]

, Q−
even

=
µ

2

[

γ(i) + γ(−i)
]

, (13b)

where Q±
even means the restriction of the operator Qeven to GSO± sectors and

µ is a complex number.
In some sense (13) is the only form for the kinetic operator which satisfies

the twist invariance and the above conditions. One can explain it as follows.
Following [9] consider an original (before field redefinition) BRST charge Q
defined as

Q =
∑

r

1

2πi

∮

dζ ar(ζ)Or(ζ) (14)

where ar are smooth forms of ζ and Or(ζ) are some local conformal operators
of ghost number 1. It was shown in [9] that after a singular field redefinition the
dominant contribution to the transformed charge Q will come from the lowest
dimensional conformal operators. This has led to the choice of c(i) and c(−i) in
the bosonic case, and this also leads to our choice of Qeven, since γ is the lowest
dimensional even primary operator of ghost number 1.
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3 NS Matter Sliver

While after the field redefinition the kinetic operator of VSFT has a pure ghost
form it is natural to search for solutions to VSFT equation of motion in the
factorized form Φ = Ξmatter ⊗ Φghost, where Ξmatter satisfies a projector-like
equation:

Ξmatter = Ξmatter ? Ξmatter . (15)

An equation similar to (15) has appeared in a construction of solitonic solutions
in noncommutative field theories in the large non-commutativity limit [24].

A way to solve projection equation (15) for the bosonic matter has been
proposed by Rastelli and Zwiebach [5]. They have constructed a solution to
(15) as the n → ∞ limit of the wedge states |n〉. The wedge states are defined
on CFT language and they satisfy the algebra

|n〉 ? |m〉 = |n+m− 1〉. (16)

From algebra (16) it immediately follows that |∞〉, the so-called sliver state,
satisfies (15).

Now we are going to construct the fermionic sliver state using CFT methods.
We refer reader to [2] in order to find the algebraic construction of the fermionic
sliver state. We have to note that numeric calculations show a conspicous agree-
ment between algebraic and CFT methods [2].

A generalization of the bosonic wedge states [5, 6] to the fermionic wedge
states is straightforward. Wedge states |n〉 are defined by

〈n|φψ〉 = 〈fn ◦ φψ(0)〉, (17)

where |φψ〉 is an arbitrary state which belongs to the fermionic subspace, fn ◦
φψ(ξ) denotes the conformal transform of φψ(ξ) and fn(ξ) is the same as in the
bosonic case, i.e.

fn(ξ) =
n

2
tan

(

2

n
tan−1 ξ

)

. (18)

The wedge state with n = 1 corresponds to the identity of the star algebra and
with n = 2 corresponds to the vacuum.

Taking the limit n→ ∞ in (18) one derives the conformal map for the sliver
state |∞〉

w(ξ) = tan−1(ξ). (19)

For a state |Λ〉 ∝ exp(1/2ψ†
rΛrsψ

†
s)|0〉, corresponding to a conformal map λ(ξ)

one gets

Λrs =

∮

dξ

2πı

∮

dξ′

2πı
ξ−r−

1

2 ξ′−s−
1

2

(

∂λ(ξ)

∂ξ

)
1

2 1

λ(ξ) − λ(ξ′)

(

∂λ(ξ′)

∂ξ′

)
1

2

. (20)

Here
∮

denotes the contour integration around the origin. Substituting the sliver

conformal map (19) one gets that the conformal sliver |Ξ̃ψ〉 ≡ |∞〉 is defined as

|Ξ̃ψ〉 = Ñ 10 exp(
1

2
ψ†
rS̃rsψ

†
s)|0〉, (21)
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S̃rs =

∮

dξ

2πı

dξ′

2πı
ξ−r−

1

2 ξ′−s−
1

2

2ı
√

1 + ξ2
√

1 + ξ′2
ln

(

(1 + iξ)(1 − iξ′)

(1 − iξ)(1 + iξ′)

)

. (22)

The matrix S̃rs can be calculated explicitly. Only coefficients with r+ s = even
differ from zero.

4 NS ghost sliver

Ghost part of VSFT equations of motion has been studied in [8, 9]. It was
observed that a sliver constructed in the twisted conformal theory with new
SL(2,R) invariant vacuum solves the ghost part of VSFT equation of motion.
This equation is a usual SFT equation of motion with a canonical choice of
ghost kinetic term that is a local insertion at the string midpoint.

We present here the twisted superghost conformal theory and derive corre-
sponding equations in analogy with the one constructed by Gaiotto, Rastelli,
Sen and Zwiebach [9]. We refer the reader to [3] where algebraic construction
of the NS ghost sliver can be found.

A twisted CFT is introduced by subtracting from the stress energy tensor
T (w) of the (β, γ) system the derivative of U(1) ghost number current j as
follows

T ′(w) = T (w) − ∂j(w), T̄ ′(w̄) = T̄ (w̄) − ∂j̄(w̄), j = −βγ. (23)

More explicitly for the holomorphic stress energy tensor one obtains

T (w) = −3

2
β∂γ(w) − 1

2
∂βγ(w), with c = 11, (24)

T ′(w) = −1

2
β′∂γ′(w) +

1

2
∂β′γ′(w), with c = −1, (25)

where (β′, γ′) denotes the superghosts of the twisted CFT and c is the central
charge. The weights of these new β′ and γ′ become equal to 1/2 and the
superghost current j′ = −β′γ′ has no anomaly. Fermionic ghosts in the original
theory are bosonised as

γ(w) = ηeφ(w), β(w) = e−φ∂ξ(w), (26)

so that the ghost number current is expressed in the form j = −∂φ. The
Euclidean world-sheet actions S and S ′ for the fields φ and φ′ correspondingly
are related as

S[φ] = S′[φ] − 1

2π

∫

Σ

d2ζ
√
gR(2)(φ+ φ̄), (27)

where ζ denotes the world-sheet coordinates, g denotes the Euclidean world-
sheet metric and R(2) is the scalar curvature.

We assume that scalar curvature is proportional to δ-function, which has a
support on the infinity in some coordinates on Σ. Therefore we can identify the
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fields φ and φ′ of two CFTs. The states in the two theories can be identified by
the following map between the oscillators and the vacuum states

βn ↔ β′
n, γn ↔ γ′n, | − 1〉 ↔ |0′〉, 〈−1| ↔ 〈0′|, 〈0′|0′〉 = 1, (28)

where |0〉 and |0′〉 are the SL(2,R) invariant vacua of two theories and | − 1〉 =
e−φ(0)|0〉.

In the CFT′ the fields β′, γ′ are bosonized as in the original theory

γ′(w) = ηeφ(w), β′(w) = e−φ∂ξ(w). (29)

Notice that we do not introduce new notations for the (ξ, η) system because it
has not changed.

The advantage of the CFT method in comparison with the operator method,
that we have used in Section 2, is that we do not have to postulate the sliver
equation from the very beginning. The aim of this section is to define a sliver
state as a surface state over SL(2,R) invariant vacuum in CFT and CFT′,
correspondingly, by the conformal map used in the matter case.

First we define the surface state for the original (β, γ) system. The fermionic
ghost surface state corresponding to the conformal map λ(ξ) is defined as

〈Λ| = Nβγ〈0| exp(−
∑

r≥3/2

s≥−1/2

γrΛrsβs), (30)

where Nβγ is a normalization factor and the matrix Λrs is defined so that the
following identity holds

〈0|e
−

∑

r≥3/2

s≥−1/2

γrΛrsβs

γ(w)β(z)e−Qφ(0)|0〉 = 〈λ ◦ γ(w)λ ◦ β(z)λ ◦ e−Qφ(0)〉. (31)

One can evaluate Λrs explicitly. To this end one has to calculate the left
hand side and right hand side of (31). Substitution of γ(w) =

∑

r γ−rw
r+1/2

and β(z) =
∑

s β−sz
s−3/2 into the left hand side of (31) yields

h(z, w) ≡ 〈0|e−γrΛrsβsγ(w)β(z)e−Qφ(0)|0〉 = −
∑

r,s

wr+1/2zs−3/2Λrs, (32)

therefore

Λrs = −
∮

dz

2πi

1

zr−1/2

∮

dw

2πi

1

ws+3/2
h(z, w). (33)

Further one evaluates the correlation function in the right hand side of (31)

〈λ ◦ γ(w)λ ◦ β(z)λ ◦ e−Qφ(0)〉

=

(

∂λ(w)

∂w

)−1/2 (

∂λ(z)

∂z

)3/2
1

λ(w) − λ(z)

(

λ(w) − λ(0)

λ(z) − λ(0)

)−Q

. (34)
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One gets the following answer for Λrs

∮

dz

2πi

z
1

2

zr
dw

2πi

w− 3

2

ws

(

∂λ(w)

∂w

)− 1

2

(

∂λ(z)

∂z

)
3

2 1

λ(z) − λ(w)

(

λ(z) − λ(0)

λ(w) − λ(0)

)2

. (35)

The fermionic ghost surface state in CFT’ corresponding to the conformal
map λ(ξ) is defined as

〈Λ′| = N ′
βγ〈0′| exp(−

∑

r≥1/2

s≥1/2

γrΛ
′
rsβs), (36)

where N ′
βγ is a normalization factor and the matrix Λ′

rs is defined so that the
following identity holds

〈0′| exp(−
∑

r≥1/2

s≥1/2

γrΛ
′
rsβs)γ

′(w)β′(z)|0′〉 = 〈λ ◦ γ′(w)λ ◦ β′(z)〉′. (37)

Substitution of γ′(w) =
∑

r γ−rw
r−1/2 and β′(z) =

∑

s β−sz
s−1/2 into the

left hand side of (37) yields

h′(z, w) ≡ 〈0′|e−γrΛ′
rsβsγ′(w)β′(z)|0′〉 = −

∑

r,s

wr−1/2zs−1/2Λ′
rs, (38)

therefore

Λ′
rs = −

∮

dz

2πi

1

zr+1/2

∮

dw

2πi

1

ws+1/2
h′(z, w). (39)

Evaluating the correlation function in the right hand side of (37) one finds

〈λ ◦ γ′(w)λ ◦ β′(z)〉′ =

(

∂λ(w)

∂w

)1/2 (

∂λ(z)

∂z

)1/2
1

λ(w) − λ(z)
. (40)

One gets the following answer

Λ′
rs =

∮

dz

2πi

1

zr+1/2

dw

2πi

1

ws+1/2

(

∂λ(z)

∂z

)1/2 (

∂λ(w)

∂w

)1/2
1

λ(z) − λ(w)
. (41)

It should be mentioned here that the matrix (41) coincides with the matrix
of the matter sliver.
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