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Abstract

We briefly review the recent progress concerning the application of the hidden integrability to the
derivation of the stringy/brane picture for the high energy QCD.

1 Introduction

The explicit realization of the generic string/gauge correspondence program (see, for instance, [1])
remains the challenging problem during the last decades. It escaped the complete solution apart from
the simplified two-dimensional example [2]. Some time ago itw



system [19]. In the relevant



with the effective QCD Hamiltonian HN acting on two-dimensional transverse coordinates of reggeons,
~zk (k = 1, ..., N) and their colour SU(Nc) charges

HN = −αs

2π

∑

1≤i<j≤N

Hij t
a
i t

a
j . (3)

Here, the sum goes over all pairs of reggeons.
To get some insight into the properties of the N−reggeon states, it proves convenient to interpret

the Feynman diagrams as describing a quantum-mechanical evolution of the system of N particles in
the t−channel between two onia states |A〉 and |B〉

σtot(s) =
∑

N≥2

(αsNc)
N 〈A| eln(1π



Here φ is the complex scalar field which generically develops the vacuum expectation value

φ = diag(φ1, ...., φNc) , (9)

with Trφ = 0. The gauge invariant order parameters uk = 〈0|Trφk|0〉 parameterize the Coulomb branch
of the vacuum manifold. They define a scale in the theory with respect to which one can discuss the
issue of a low energy effective action. This action takes into account one-loop perturbative correction
as well as the whole instanton series and it is governed by the Riemann surface of the genus Nc − 1 for
SU(Nc) gauge group. The same Riemann surface appears as the spectral curve of a classical integrable
many-body system (see [24] for a review). The integrable system provides the natural explanation for
the appearance of the meromorphic differential λSW, which turns out to be the action differential in
the separated variables λ

SW
= p dx. Let us emphasize that for SUSY YM case the classical integrable

system is relevant and the meaning of the quantum system and the corresponding spectrum for SUSY
YM remains an open question. It should involve the quantization of the vacuum moduli space since the
hamiltonian in the dynamical system is nothing but H = u2 = 〈TrΦ2〉. Simultaneously, this parameter
serves as the coordinate on the moduli space of the complex structures of the Riemann surfaces whiich
means that the quantization of the integrable system is related with the quantization of the effective
d=2 gravity.

Let us now consider a particular theory, namely the superconformal N=2 SUSY YM with Nf = 2Nc

massless fundamental hypermultiplets [18, 25]. The corresponding integrable system is described by the
spectral curve ΣNc

y2 = P 2
Nc

(x) − 4x2Nc(1 − ρ2(τcl)) , (10)

where ρ2(τcl) is some function of a coupling constant of the theory and the polynomial PNc depends on
the coordinates on the moduli space ~u = (u2, ..., uNc)

PNc(x) =

Nc
∑

k=0

qk(~u)xNc−k = 2xNc + q2 x
Nc−2 + ...+ qNc , (11)

where q0 = 2, q1 = 0 and other qk are some known functions of ~u. Their explicit form is not important
for our purposes. The Seiberg-Witten meromorphic differential on the curve is given by

λ
SW

= p dx = ln(ω/xNc) dx , (12)

where y = ω − x2Nc/ω.
From the point of view of integrable models the spectral curve corresponds to a classical XXX

Heisenberg spin chain of length Nc with the spin zero at all sites (due to q1 = 0) and parameter ρ
related to the external magnetic field, or equivalently, to the twisted boundary conditions [20].

Comparing the spectral curve for the superconformal N=2 SUSY YM with Nf = 2Nc with the
spectral curve for N−reggeon compound states in multi-colour QCD one observes that they coincide if
we make the following identification

• The number of the reggeons N = Nc;

• The integrals of motion of multi-reggeon system are identified as the above mentioned functions
qk(~u) on the moduli space of the superconformal theory;

• The coupling constant of the gauge theory should be such that ρ(τcl) = 0.

Under these three conditions the both theories fall into the same universality class. The third condition
implies that the so-called strong coupling orbifold point on the moduli space corresponds to the Regge
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limit of multi-colour QCD. For instance, the strong coupling orbifold point ρ(τcl) = 0 describing the
Odderon state in QCD occurs at

τcl =
1

2
+

i

2
√

3
. (13)

Finally we would like to note that there is the following intriguing fact. In the case of Nc = 2 which
corresponds on the QCD side to the BFKL Pomeron state, the effective coupling constant is given in
the weak coupling regime by the expression

τeff = τcl + i
4 ln 2

π
+
∑

k

ck · e2iπkτcl , (14)

where the second term is due to a finite one-loop correction [27] and the rest is the sum of instanton
contributions. It is amusing that this one-loop correction to the coupling constant

1

g2
eff

=
1

g2
cl

[

1 +
g2
cl

4π2
4 ln 2

]

+ ... (15)

coincides with the expression for the intercept of the BFKL Pomeron after one identifies bare coupling
constant in the superconformal theory with the t’Hooft coupling constant in QCD.

3 Brane picture for the Regge limit

Let us discuss now using the universality class arguments above a stringy/brane picture for the Regge
limit in multi-colour QCD. To warm up we would like to recall the brane description of the low-energy
dynamics of the N = 2 SUSY YM. In the IIA framework the pure gauge theory is defined on the
worldvolume of Nc D4 branes with the coordinates (x0, x1, x2, x3, x6) stretched between two NS5 branes
with the coordinates (x0, x1, x2, x3, x4, x5) and displaced along the coordinate x6 by an amount inversely
proportional to the coupling constant, δx6 = 1/g2 [29]. The coordinates at which the D4 branes intersect
with the (x4, x5) complex plane define the vacuum expectation value of the scalar fields. This picture
agrees perfectly with the RG behaviour of the coupling constant and yields the correct beta function
in the gauge theory. The Riemann surface Σ discussed above describes the vacuum state of the theory
and the spectrum of the stable BPS states. The lifting to the M theory picture leads to emergence of a
single M5 brane with the worldvolume R4 × Σ [28].

In our case, we also need to incorporate into this picture branes corresponding to the fundamental
matter with Nf = 2Nc. There are two ways to do this: either using semi-infinite D4 branes lifted into
M5 brane in the M theory, or using D6 branes which induce the nontrivial KK monopole background
for the M2 brane wrapped on the Riemann surface [29]. As was shown in [20] in the latter case the
resulting brane picture remains consistent with the integrable spin chain dynamics and we shall stick to
this case.

The explicit metric of the KK background in the M theory involving (x4, x5, x6, x10) coordinates has
the multi-Taub-NUT form

ds2 =
V

4
d~r2 +

V −1

4
(dτ + ~Ad~r)2 (16)

where ~r = (x4, x5, x6), τ = x10 and ~A is the Dirac monopole potential. The magnetic charge comes
from the nontrivial twisting of S1 bundle over R3. The function V behaves as

V = 1 +

i=Nf
∑

i=1

1

|~r − ~ri|
(17)
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where ~ri = (xi
4, x

i
5, x

i
6) are the positions of six-branes. For a superconformal case one must have xi

4 =
xi

5 = 0 and positions of sixbranes in x6 direction are irrelevant.
Let us turn now to our proposal for the brane realization of the Regge limit. We shall explore the

brane representations for the Nf = 2Nc theory known in the IIA/M theory [29]. However unlike the
SUSY case where the spectral curve is embedded in the internal “momentum” space the spectral curve
of the noncompact spin chain is placed in the phase space involving both impact parameter plane as
well as momenta. Consider the IIA/M type picture which is reminiscent to the realization of SYM
theory via two NS5 and Nc D4 branes. We suggest that the coordinates involved in “IIA” picture are
the transverse impact parameter coordinates x1, x2 and rapidity λ = ln k+/k−. Transverse coordinates
are analogue of (x4, x5) coordinates in SUSY case while rapidity substitutes the x6 coordinate. Now let
us make the next step and suggest that similar to SUSY case the single brane is wrapped around the
spectral curve of XXX magnet and two “hadronic planes” together with N “Reggeonic strings” are just
different projections of the single membrane with worldvolume R × Σ. The coordinates involved into
configurations are x1 + ix2 and y = e−(λ+ix10) where x10 is the “M-theory” coordinate.

Let us emphasize once again that the brane configuration for Regge limit contrary to SYM case
partially involves the coordinate space. More precisely the geometry of Nf = 2Nc theory is determined
by the following parameter [29]

ξ = − 4λ+λ−
(λ+ − λ−)2

. (18)

Here λ+ and λ− are asymptotic positions of five-branes defined by the large x behaviour of the curve

ω ∝ λ±x
Nc . (19)

λ± can be found as roots of the equation

λ2
± + λ± +

1

4
(1 − ρ2) = 0 (20)

Since Regge limit corresponds to the strong coupling orbifold point, ρ = 0, the value of ξ is fixed as
ξ = ∞. This corresponds to the coinciding branes at infinity.

Finally, the M theory brane picture for the Regge limit involves M5 brane corresponding to the
vacuum state of the QCD. We can not say how it is placed precisely as the minimal surface in the
internal seven dimensional space since the corresponding geometry is unknown yet. The new ingredient
- membrane share the time direction with the M5 brane and wrapping around the Riemann surface
which is embedded into two-dimensional complex “phase space” with the multi-Taub-NUT metric de-
termined by KK monopoles with the magnetic charge 2N , which is a double number of reggeized gluons
participating in the scattering process. The possible identification of the membrane above with the M2
brane deserves further investigation.

4 Quantum spectrum and S-duality

The S−duality is a powerful symmetry in the SUSY YM theory which allows us to connect the weak and
strong coupling regimes. The effective coupling in this theory coincides with the modular parameter
of the spectral curve of the underlying classical integrable model. As a consequence, the S−duality
transformations in the gauge theory are translated into the modular transformations of the spectral
curve describing complexified integrable system. A formulation of the S−duality in the latter system
naturally leads to an introduction of the notion of the dual action [30].

So far the S−duality was well understood only for classical integrable models. In the case of multi-
colour QCD in the Regge limit the situation is more complicated since the duality has to be formulated
for a quantum integrable model. The integrals of motion take quantized set of values and the coordinates
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on the moduli space are not continuous anymore. Therefore the question to be answered is whether it
is possible to formulate some duality transformations at the quantum level.

To study this question let us propose the WKB quantization conditions which are consistent with
the duality properties of the complexified dynamical system whose solution to the classical equations of
motion are described by the Riemann surface. We recall that the standard WKB quantization conditions
involve the real slices of the spectral curve

∮

Ai

p dx = 2π~(ni + 1/2) (21)

where ni are integers and the cycles Ai correspond to classically allowed trajectories on the phase space
of the system. In our case the coordinate x is complex and arbitrary point on the Riemann surface
is classically allowed. As a result the general classical motion involves both A− and B−cycles on the
Riemann surface. This leads to the following generalized WKB quantization conditions for actions and
dual actions

Re

∮

Ai

p dx = π~ni , Re

∮

Bi

p dx = π~mi , (22)

where the “action” differential was defined in (12). Note that in the context of the SUSY YM this
condition would correspond to the nontrivial constraints on the periods and on the mass spectrum of
the BPS particles . It is clear that the WKB conditions (22) imply the duality Ai ↔ Bi and ni ↔ mi.

Let us consider the quantization conditions (22) in the simple case of the Odderon N = 3 system.
The spectral curve is a torus

y2 = (2x3 + q2x+ q3)
2 − 4x6 (23)

where q2 is given by conformal spin while q3 is the complex integral of motion to be quantized. The
quantization conditions (22) read (for ~ = 1)

Re a(q3) = πn, Re aD(q3) = πm (24)

where n and m are integer. These equations can be solved for large values of q2
3/q

3
2 � 1, for which the

expressions for the periods a(q3) and aD(q3) are simplified considerably. The explicit evaluation of the
integrals in this limit yields

a(q3) =
(2π)2q

1/3
3

Γ3(2/3)
, aD(q3) = a(q3)

(

1

2
+

i

2
√

3

)

(25)

Substituting these expressions into (24) one finds

q
1/3
3 =

Γ3(2/3)

2π

(

`1
2

+ i

√
3

2
`2

)

. (26)

where `1 = n and `2 = n − 2m. The WKB expressions (26) are in a good agreement with the exact
expressions for quantized q3 obtained from the numerical solutions of the Baxter equations in [26]. Note
that WKB formulae can not be naively applied to the ground states discussed in [26, 31, 33].

Let us emphasize that the point at the moduli space corresponding to the degeneration of the torus
for the Odderon case does not appear in the quantum spectrum. From the point of view of the gauge
theory this means that the appearance of the massless states is forbidden.

In the general multi-reggeon case we have to consider the quantization conditions (22) on the Rie-
mann surface of the genus (N − 2) which has the same number of the A− and B−cycles. In result the
spectrum of the integrals of motion q3, ..., qN is parametrized by two (N − 2)−component vectors ~n
and ~m. In the SUSY YM case these vectors define the electric and magnetic charges of the BPS states.
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In the Regge case the physical interpretation of ~n and ~m is much less evident. Let us first compare the
electric quantum numbers in the two cases. In Regge case it corresponds to rotation in the coordinate
space around the ends of the Reggeons. This picture fits perfectly with the interpretation of the electric
charge in SUSY YM case. Indeed VEVs of the complex scalar take values on the complex plane which
is the counterpart of the impact parameter plane and the rotation of the phase of the complex scalar is
indeed the “electric rotation”.

To get some guess concerning the “magnetic” quantum numbers it is instructive to check the geo-
metrical picture behind them in the simplified “IIA” picture. All states corresponding to the “electric”
degrees of freedom are related to fundamental strings encircling “reggeoinic” tubes and don’t feel the
hadronic planes. However the “magnetic” states as is well known from SUSY YM case are represented
by the membrane stretched between two strings and two hadronic planes. Therefore these states are
sensitive to hadronic quantum numbers. More detailed interpretation of “magnetic” degrees of freedom
in the Regge regime has to be recovered.

5 Stringy/brane picture and the calculation of the anomalous dimen-

sions

We have demonstrated that integrability properties of the Schrödinger equation for the compound state
of Reggeized gluons give rise to the stringy/brane picture for the Regge limit in multi-colour QCD.
There is another limit in which QCD exhibit remarkable properties of integrability. It has to do with
the scaling dependence of the structure functions of deep inelastic scattering and hadronic light-cone
wave functions in QCD. In the both cases, the problem can be studied using the Operator Product
Expansion and it can be reformulated as a problem of calculating the anomalous dimensions of the
composite operators of a definite twist. The operators of the lowest twist have the following general
form

O(2)
N,k(0) = (yD)kΦ1(0)(yD)N−kΦ2(0),

O(3)
N,k(0) = (yD)k1Φ1(0)(yD)k2Φ2(0)(yD)N−k1−k2Φ3(0), (27)

where k ≡ (k1, k2) denotes the set of integer indices ki, yµ is a light-cone vector such that y2
µ = 0. Φk

denotes elementary fields in the underlying gauge theory and Dµ = ∂µ − iAµ is a covariant derivative.
The operators of a definite twist mix under renormalization with each other. In order to find their
scaling dependence one has to diagonalize the corresponding matrix of the anomalous dimension and
construct linear combination of such operators, the so-called conformal operators

Oconf
N,q (0) =

∑

k

Ck,q · ON,k(0) . (28)

A unique feature of these operators is that they have an autonomous RG evolution

Λ2 d

dΛ2
Oconf

N,q (0) = −γN,q · Oconf
N,q (0) . (29)

Here Λ2 is a UV cut-off and γN,q is the corresponding anomalous dimension depending on some set of
quantum numbers q to be specified below. It turns out that the problem of calculating the spectrum
of the anomalous dimensions γN,q to one-loop accuracy becomes equivalent to solving the Schrödinger
equation for the SL(2,R) Heisenberg spin magnet. The number of sites in the magnet is equal to the
number of fields entering into the operators under consideration.

To explain this correspondence it becomes convenient to introduce nonlocal light-cone operators

F (z1, z2) = Φ1(z1y)Φ2(z2y) , F (z1, z2, z3) = Φ1(z1y)Φ2(z2y)Φ3(z3y) . (30)
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Here yµ is a light-like vector (y2
µ = 0) defining certain direction on the light-cone and the scalar variables

zi serve as a coordinates of the fields along this direction. The fields Φi(ziy) are transformed under the
gauge transformations and it is tacitly assumed that the gauge invariance of the nonlocal operators F (z i)
is restored by including the Wilson lines between the fields in the appropriate (fundamental or adjoint)
representation. The conformal operators appear in the OPE expansion of the nonlocal operators (30)
for small z1 − z3 and z2 − z3.

The field operators entering the definition of F (zi) are located on the light-cone. This leads to the
appearance of the additional light-cone singularities. They modify the renormalization properties of
the nonlocal light-cone operators (30) and lead to nontrivial evolution equations which as we will show
below become related to integrable chain models. We notice that there exists the following relation
between the conformal three-particle operators (28) and the nonlocal operators (30)

Oconf
N,q (0) = ΨN,q(∂z1

, ∂z2
, ∂z3

)F (z1, z2, z3)

∣

∣

∣

∣

zi=0

, (31)

where ΨN,q(x1, x2, x3) is a homogenous polynomial in xi of degree N

ΨN,q(x1, x2, x3) =
∑

k

Ck,q · xk1

1 x
k2

2 x
N−k1−k2

3 (32)

with the expansion coefficients Ck,q defined in (28). The problem of defining the conformal operators
is reduced to finding the polynomial coefficient functions ΨN,q(xi) and the corresponding anomalous
dimensions γN,q. Using the renormalization properties of the nonlocal light-cone operators (30) one can
show [14], that to the one-loop accuracy the QCD evolution equation for the conformal operators (30)
can be rewritten in the form of a Schrödinger equation

H · ΨN,q(xi) = γN,qΨN,q(xi) , (33)

where the Hamiltonian H acts on the xi−variables which are conjugated to the derivatives ∂zi
and,

therefore, have the meaning of light-cone projection (y · pi) of the momenta pi carried by particles
described by fields Φ(ziy).

For example when Φ1 and Φ2 are quark fields of the same chirality

Fαβ(z1, z2) =

Nc
∑

i=1

(q̄↑i 6y)α(z1y)(6yq↑i )β(z2y) (34)

with q↑i = (1 + γ5)qi/2, the two-particle Hamiltonian is given by

H12 =
αs

π
CF [Hqq(J12) + 1/4] , Hqq(J12) = ψ(J12) − ψ(2). (35)

where CF = (N2
c − 1)/(2Nc). The eigenfunctions for this Hamiltonian are the highest weights of the

discrete series representation of the SL(2, R) group

Ψ
(2)
N (x1, x2) = (x1 + x2)

NC
3/2
N

(

x1 − x2

x1 + x2

)

(36)

where C
3/2
N are Gegenbauer polynomials. The corresponding eigenvalues define the anomalous dimen-

sions of the twist-2 mesonic operators built from two quarks with the same helicity

γ
(2)
N =

αs

π
CF [ψ(N + 2) − ψ(2) + 1/4] =

αs

π
CF

[

N
∑

k=1

1

k + 1
+

1

4

]

. (37)
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At large N this expression has well-known asymptotic behaviour γ
(2)
N ∼ αsCF /π lnN .

It is conformal symmetry which dictates that the two-particle Hamiltonian is a function of the
Casimir operator of the SL(2,R) group, but it does not fix this function. The fact that this function
turns out to be the Euler ψ-function leads to a hidden integrability of the evolution equations for
anomalous dimensions of baryonic operators . Namely, for baryonic operator built from three quark
fields of the same chirality

Fαβγ(z1, z2, z3) =

Nc
∑

i,j,k=1

εijk(6yq↑i )α(z1y)(6yq↑j )β(z2y)(6yq↑k)γ(z3y) (38)

the evolution kernel is given by [13, 14]

H(3) =
αs

2π
{(1 + 1/Nc) [Hqq(J12) +Hqq(J23) +Hqq(J31)] + 3CF /2} (39)

with Hqq given by (35). The Schrödinger equation (33) with the Hamiltonian defined in this way has a
hidden integral of motion

q = i (∂x1
− ∂x2

) (∂x2
− ∂x3

) (∂x3
− ∂x1

)x1x2x3 (40)

and, therefore, it is completely integrable. Similar to the Regge case, one can identify (39) as the
Hamiltonian of a quantum XXX Heisenberg magnet of SL(2,R) spin jq = 1. The number of sites is
equal to the number of quarks.

Based on this identification we shall argue now that the calculation of the anomalous dimensions can
be formulated entirely in terms of Riemann surfaces which in turn leads to a stringy/brane picture. It is
important to stress here the key difference between Regge and light-cone limits of QCD. In the first case
the impact parameter space provides the complex plane for the Reggeon coordinates and we are dealing
with a (2 + 1)−dimensional dynamical system. In the second case the QCD evolution occurs along the
light-cone direction and is described by a (1 + 1)−dimensional dynamical system. As a consequence,
in these two cases we have two different integrable magnets: the SL(2,C) magnet for the Regge limit
and the SL(2,R) magnet for the light-cone limit. The evolution parameters (“time” in the dynamical
models) are also different: the rapidity ln s for the Regge case and the RG scale lnµ for the anomalous
dimensions of the conformal operators.

Our approach to calculation of the anomalous dimensions via Riemann surfaces looks as follows. For
concreteness, we shall concentrate on the evolution kernel (39). Similarly to the Regge case, one starts
with the finite-gap solution to the classical equation of motion of the underlying SL(2,R) spin chain
and identifies the corresponding Riemann surface

ω − x6

ω
= 2x3 − (N + 2)(N + 3)x+ q , ω = x3 ep (41)

where q is the above mentioned integral of motion (40) and N is the total SL(2,R) spin of the magnet,
or equivalently the number of derivatives entering the definition of the conformal operator (28). Note
that the Riemann surface corresponding to the three-quark operator has genus g = 1, while g = 0 for
the twist 2 operators.

At the next step we quantize the Riemann surface in Sklyanin’s approach [34]. We replace p = i∂/∂x
and impose the equation of the complex curve as the operator annihilating the Baxter function

(

ei∂/∂x +e−i∂/∂x
)

x3Q(x) =
[

2x3 − (N + 2)(N + 3)x+ q
]

Q(x) . (42)

This leads to the Baxter equation for the Heisenberg SL(2,R) magnet of spin j = 1

(x+ i)3Q(x+ i) + (x− i)3Q(x− i) =
[

2x3 − (N + 2)(N + 3)x+ q
]

Q(x) . (43)
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Similar to the Baxter equation in the Regge case, this equation does not have a unique solution. To
avoid this ambiguity one has to impose the additional conditions that Q(x) should be polynomial in x.
This requirement leads to the quantization of the integral of motion. The resulting polynomial solution
Q = Qq(x) has the meaning of the one-particle wave function in the separated variables x which in the
case of the SL(2,R) magnet take arbitrary real values.

Given the polynomial solution to the Baxter equation (43), one can determine the eigenspectrum of
the Hamiltonian (39) and in result the anomalous dimensions of the corresponding baryon operators

γ
(3)
N,q =

αs

2π
[(1 + 1/Nc)EN,q + 3CF /2] , EN,q = i

Q′
q(i)

Qq(i)
− i

Q′
q(−i)

Qq(−i)
(44)

parameterized by the eigenvalues of the integral of motion (40) given by

q = −iQq(i) −Qq(−i)
Qq(0)

(45)

The solution to the Baxter equation simplifies greatly in the quasiclassical approximation which is
controlled by the total SL(2,R) spin of the system N . For N � 1 the spectrum of the integral of motion
q is determined by the WKB quantization condition [23]

∮

A
p dx = 2π(n+ 1/2) + O(1/N) (46)

where p was introduced in (42). Here integration goes over the A-cycle on the Riemann surface defined
by the spectral curve (42). This cycle encircles the interval on the real x−axis on which | ep | > 1.
Solving (46) one gets

q = ± N3

√
27

[

1 − 3

(

n+
1

2

)

N−1 + O(N−2)

]

. (47)

Taking into account that in this case q2 = −(N + 3)(N + 2) and q3 = q we conclude that for N → ∞
the system is approaching the Argyres-Douglas point. Note also that the WKB quantization conditions
(46) involve only the A−cycle on the Riemann surface and unlike the Regge case there is no S−duality
in the quantum spectrum in the light-cone case.

Finally, the spectrum of the anomalous dimensions in the WKB approximation is given by [23, 14]

EN,q = 2 ln 2 − 6 + 6γE + 2Re

3
∑

k=1

ψ(1 + iδk) + O(N−6), (48)

where δk are defined as roots of the following cubic equation:

2δ3k − (N + 2)(N + 3)δk + q = 0 (49)

and q satisfies (47).
What can we learn about stringy picture from this information about anomalous dimensions? Let

us remind that in the spirit of string/gauge fields correspondence the anomalous dimensions of gauge
field theory operators coincide with excitation energies of a string in some particular background. An
important lesson that we have learned from the analysis of the two- and three-quark operators is that
in the first case the anomalous dimensions are uniquely specified by a single parameter N which define
the total SL(2,R) spin. In the second case, a new quantum number emerges due to the fact that the
corresponding dynamical system is completely integrable. The additional symmetry can be attributed
to the operator q defined in (40). From the point of view of a classical dynamics this operator generates
the winding of a particle around the A−cycles on the spectral curve. Within the string/gauge fields
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correspondence one expects to reproduce these properties using a description in terms of the same
string propagating in different backgrounds. One is tempting to suggest that different properties of
the anomalous dimensions of the two- and three-particle operators should be attributed to different
properties of the background. In the case of the twist-2 the anomalous dimensions depend on integer
N which in the classical system has an interpretation of the total SL(2,R) angular momentum of
the system. On the stringy side the same parameter has a natural interpretation as a string angular
momentum.

In our approach we have the following correspondence

operator ⇐⇒ Riemann surface

twist of the operator ⇐⇒ genus of the Riemann surface

calculation of the anomalous dimension ⇐⇒ quantization of the Riemann surface

It seems that the Riemann surfaces whose moduli (the integrals of motion of the spin chain) define the
anomalous dimensions of the corresponding operators describe the σ−model solutions found in [5]. The
precise relation between two approaches need to be clarified further.

As we have mentioned the quantization of the Riemann surface can be performed most effectively
in terms of the Baxter equation. It is worth noting that the solution to the Baxter equation can be
identified as a wave function of D0 brane [35]. Quantization conditions arise from the requirement for
the wave function the D0 brane probe in the background of the Riemann surface to be well defined.

In the case of the light-cone composite operators we have to incorporate into the stringy picture a
new quantum number which is parameterized by an integer n, Eq. (47), i.e. string excitation spectrum
has now different sectors parameterized by this integer. The natural way to interpret these sectors is to
identify n with the winding number of a closed string. The corresponding background for such scenario
is offered by the Riemann surface itself with the string wrapped around the A−cycle. It is an interesting
open question if one can interpret a momentum in WKB quantization condition (46) as a momentum
of a string T -dual to the string with the winding number n.

Since the spectrum of the anomalous dimensions in QCD coincides with the spectrum of the SL(2,R)
spin chain Hamiltonian it would be interesting to explore further the symbolic relation

Hstring ∝ Hspin (50)

where string propagates in the background determined by the Riemann surface of the spin chain. The
possible link to the explanation of this relation looks as follows.It is known that hamiltonian formulation
of the spin chains is closely related to the Chern-Simons (CS) theory with the inserted Wilson lines.
The number of the sites in the spin chain N corresponds to the number of the Wilson lines. The gauge
group in the CS theory is the symmetry group of the magnet. To get CS action from the natural AdS
geometry let us remind that AdS3 can be reformulated in terms of SL(2, C) CS indeed [36]. Hence it is
natural to assume that the spin chain corresponding to Regge limit describes the motion of N degrees
of freedom in AdS3 space. This issue will be discussed in more details elsewhere.

I am grateful to I. Kogan and G. Korchemsky for the collaboration. The work was supported in
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