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Abstract

We present a universal normal Calabi-Yau algebra suitable for constructing and classify-

ing the infinite series of the compact complex spaces with SU(n) holonomy. This algebraic

approach includes natural extensions of reflexive weight vectors to higher dimensions. It

includes a ‘dual’ construction based on the Diophantine decomposition of invariant mono-

mials, which provides explicit recurrence formulae for the numbers of Calabi-Yau spaces in

arbitrary dimensions.

1 Introduction: an Algebraic Way to Unify Calabi-Yau

Geometry

Geometrical ideas play ever-increasing rôles in the quest to unify all the fundamental in-

teractions. They were introduced by Einstein in the formulation of general relativity, and

extended to higher dimensions by Kaluza and Klein in order to include electromagnetism.

This is described by the geometrical principle of gauge invariance, which is also used in

the formulation of the strong and weak interactions. It is already well known that the

compactification on the symmetric spaces with some isometry and holonomy groups were

intensively used to extend the idea of Kaluza-Klein in the supergravity approach and then

in compactification of five superstrings and M/F-theories.

The notion of the holonomy symmetry was indiced by E.Cartan for classification of all

Riemannian locally symmetric spaces. The holonomy group H is one of the main character-



istic of an affine connection on a manifold M. The definition of holonomy group is directly

connected with parallel transport along the piece-smooth path joining two points x ∈ M

and y ∈ M . For a connected n-dimensional manifold M with Riemannian metric g and Levi-

Civita connection the parralel transport along using the connection defines the isometry

between the scalar products on the tangent spaces TxM and TyM at the points x and y. So

for any point x ∈ M one can represent the set of all linear automorphisms of the associated

tangent spaces TxM which are induced by parallel translation along x-based loop.

If a connection is locally symmetric then its holonomy group equals the local isotropy

subgroup of the isometry group G. Hence, the holonomy group classification of these connec-

tions is equivalent to the classification of symmetric spaces which was done completely long

ago [1] The full list of symmetric spaces is given by the theory of Lie groups through the

homogeneous spaces M = G/H, where G is a connected group Lie acting transitively on M

and H is a closed connected Lie subgroup of G, what determines the holonomy group of M.

Symmetric spaces have a transitive group of isometries. The known examples of symmetric

spaces are Rn, spheres Sn, CP n etc.

Firstly, in 1955, Berger presented the classification of irreducibly acting matrix Lie groups

occured as the holonomy of a torsion free affine connection. The Berger list of non-symmetric

irreducible Riemannian manifolds with the list of holonomy groups H of M one can see, for

example, in [4].

For H=SO(n) the holonomy principle means that there are no parallel (constant) tensor

fields apart from metric and orientation. The next example H = U(n) ⊂ SO(2n) is pre-

serving apart from metric the complex structure J on R2n which is parallel (constant) and

orthogonal (J ∈ SO(2n), J2 = −1). These manifolds with holonomy contained in U(n) are

Riemannian manifolds with a complex structure J called as Kähler manifolds.

We will accent here on the infinite series of Calabi-Yau spaces with SU(n) holonomy

group [3]. Following Joyce [4] it is better here to define the Calabi-Yau n-folds as a quadru-

ple (M, J, g, Ω) where (M, J) is a complex compact n-dimensional manifold with complex

structure J , g is a Kähler metrics with SU(n)-holonomy group, and Ω is a non-zero constant

(parallel) Ω = (n, 0)-tensor called by the holomorphic volume form.

In principle, it is enough to define the Calabi-Yau n-folds a little shorter i.e. a Calabi-



Yau n-fold is a compact Kähler manifold (M, J, g) of dimension n with SU(n) holonomy

group. And then one can prove for Calabi-Yau n-folds the existence of constant (parallel)

holomorphic Ω = (n, 0) form. More exactly, using the holonomy principle one can choose

for each point x ∈ M the complex coordinates (z1, ..., zn) in which

g = |dz1|
2 + . . . |dzn|

2

ω =
i

2
(dz1Λdz̄1 + . . . + dznΛdz̄n)

Ω = dz1Λ . . .Λdzn (1)

where the form Ω is unique up to multiplication by expiφ for φ ∈ [0, 2π). The existence

of a parallel form of type (n, 0) means that the cannonical bundle KM := Ωn
M is flat. In

other words, the Ricci curvature which for Kähler manifold is just the curvature of KM is

equal to zero. Due to Yau’s proof of the Calabi conjecture one has the following: If (M,J)

is a compact complex n-fold admitting Kähler metrics with trivial cannonical bundle then

there exists a unique Ricci-flat metrics g in each Kähler class of M and with holonomy group

H = SU(n). We would like to present the possibility for algebraic solution of this infinite

Calabi-Yau series of compact complex n-folds with SU(n) holonomy (see Figure 1).

2 The Arity-Dimension Structure of Universal Calabi-

Yau Algebra

The starting point for our algebraic approach to the classification of Calabi-Yau spaces has

therefore been the construction of ‘reflexive’ weight vectors ~k, whose components specify

the complex quasihomogeneous projective spaces CP n(k1, k2, ..., kn+1). These have (n + 1)

quasihomogeneous coordinates x1, ..., xn+1, which are subject to the following identification:

(x1, . . . , xn+1) ∼ (λk1 · x1, . . . , λ
kn+1 · xn+1). (2)

In the case of CP n projective spaces there exists a very powerful conjecture, called Chow’s

theorem, that each analytic compact (closed) submanifold in CP n can be specified by a

set of polynomial equations. The set of zeroes of quasihomogeneous polynomial equations,
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Figure 1: The genealogical tree for Calabi-Yau n-folds.

hereafter referred to as Calabi-Yau equations, define a projective algebraic variety in such a

weighted projective space.

A d-dimensional Calabi-Yau space Xd can be given by the locus of zeroes of a transver-

sal quasihomogeneous polynomial ℘ of degree deg(℘) = [d] : [d] =
∑n+1

j=1 kj in a complex



projective space CP n(~k) ≡ CP n(k1, ..., kn+1) [6]:

X ≡ X (n−1)(k) ≡ {~x = (x1, ..., xn+1) ∈ CP n(k)|℘(~x) = 0}. (3)

The general quasihomogeneous polynomial of degree [d] is a linear combination

℘ =
∑

~µα

c~µα
x~µα (4)

of monomials x~µα = xµ1α

1 xµ2α

2 ...x
µ(r+1)α

r+1 with the condition:

~µα · ~k = [d]. (5)

This algebraic projective variety is irreducible if and only if its polynomial is irreducible.

A hypersurface will be smooth for almost all choices of polynomials. To obtain Calabi-Yau

d-folds one should choose reflexive weight vectors (RWVs), related to Batyrev’s reflexive poly-

hedra or to the set of IMs. Other examples of compact complex manifolds can be obtained

as the complete intersections (CICY) of such quasihomogeneous polynomial constraints:

X
(n−r)
CICY = {~x = (x1, . . . xn+1) ∈ CP n |℘1(~x) = . . . = ℘r(~x) = 0}, (6)

where each polynomial ℘i is determined by some weight vector ~ki, i = 1, . . . , r.

A useful technique for constructing Calabi-Yau spaces in any number of dimensions is to

visualize the various possible monomials (xµ1
1 xµ2

2 ...xµn+1
n )α as the mα = (µ1, ..., µn+1)α points

in the Zn+1 integer lattice of an n-dimensional polyhedron. Using this technique, Batyrev [5]

demonstrated how to associate by explicit construction a mirror polyhedron to each Calabi-

Yau space. This approach also established in a very elegant way the corresponding mirror

duality among Calabi-Yau spaces.
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Figure 2: The arity-dimension plot, showing the numbers of eldest vectors/chains obtained
by normal extensions of RWVs, including previous results for CY3 and lower-dimensional
spaces, and new results for CY4 and CY5 spaces.

The Universal Calabi-Yau Algebra (UCYA) structure of reflexive weight vectors in differ-

ent dimensions depends on two integer parameters: the arity r of the combination operation

ωr, and the dimension n of the reflexive weight vectors (RWVs), that are connected one-to-



one with Batyrev’s reflexive polyhedra. These weight-vectors could be classified using the

natural extensions of lower-dimensional vectors and their combination via binary, ternary,

etc., operations (see Figure 2). The innovation is the introduction of a complementary al-

gebraic approach to the construction of Calabi-Yau spaces, based on the construction of

suitable monomials ~µ obeying the ‘duality’ condition: ~k · ~µα = d. This construction supple-

ments the previous geometrical method related to Batyrev polyhedra, and enables one to

calculate the numbers of eldest vectors, and hence chains, in arbitrary dimensions. We verify

explicitly that the eldest vectors found in the two different ways agree in several instances

for both CY3 and CY4 spaces, providing increased confidence in our results. The study of

the Calabi-Yau equations and the associated hypersurfaces via the remarkable composite

properties of IMs provides an alternative algebraic route to reflexive polyhedron techniques.

Central rôles are played in our approach by the composite structures in lower dimensions

≤ (d− 1) of CY d-folds, and the algebraically dual ways of expansions using weight vectors

~k and invariant monomials (IMs). By analogy with the Galois normal extension of fields, we

term the first way of expanding weight vectors a normal extension, and the dual decompo-

sition in terms of IMs we call the Diophantine expansion. These two expansion techniques

are consistently combined in our algebraic approach, whose composition rules exhibit explic-

itly the internal structure of the Calabi-Yau algebra. Our method is closely connected to

the well-known Cartan method for constructing Lie algebras, and reveal various structural

relationships between the sets of Calabi-Yau spaces of different dimensions. We interpret

our approach as revealing a ‘Universal Calabi-Yau Algebra’ [11] for the following reasons:

‘Universal’ because it may, in principle, be used to generate all Calabi-Yau manifolds of any

dimension with all possible substructures, and ‘Algebra’ because it is based on a sequence

of binary and higher n-ary operations on weight vectors and monomials.

Our objective is to construct an universal algebra [11] acting on the set of reflexive

weight vectors in all dimensions, An ≡ {RWV(n)}, and the corresponding set of invariant

monomials, {IMs(n)}, which is ‘dual’ to An in the sense of (5). We note that the number of

IMs is much less the full set of monomials ~mα : 1 ≤ α ≤ αmax which determine the Calabi-

Yau equation. Through the IMs one can determine the highest vectors of the chains and also

the full list of weight vectors in the corresponding chain. To see this, we start from the unit



IM in some dimension n and then, via a Diophantine expansion, can go on to determine the

conic IMs, the cubic IMs, the quartic IMs, etc.. Similarly, one can continue this process of

studying the set of IMs via the Diophantine expansions of conic IMs, of cubic IMs, etc..

The RWVs and IMs provide independent routes for constructing explicitly Calabi-Yau

spaces of arbitrary dimension (including CICYs). The resulting UCYA structure of RWVs

in different dimensions depends on two integer parameters, including the ‘arity’ r defined

below, as well as the dimension n. An overview in the (n, r) plane is shown in Fig. 2, where

the entries A(r)
n label the types of possible eldest vectors, corresponding to ‘chains’ of related

Calabi-Yau spaces.

The algebraic-geometry realization [6, 7] of Coxeter-Dynkin diagrams provides a general

characterization of the possible structures in singular limits of Calabi-Yau hypersurfaces.

Thus, a deeper understanding of the origins of gauge invariance provides an additional moti-

vation for studying string vacua via our unification of the complex geometry of d = 1 elliptic

curves, complex tori, K3 manifolds, CY3, CY4, etc. This point is illustrated in Figs. ??,

where the points on the the first three sloping lines, labelled Ar (red), Dr (green) and E

(blue), correspond to those d-folds that are characterized by the ‘maximal’ quotient A, D, E

singularities, respectively 1. As we discuss later in more detail, this characterization of the

types of singularities is directly connected to the degrees of the associated monomials - linear,

conics, cubics, quartics, etc., that appear along the corresponding sloping lines.

3 Some Results

We have presented a Universal Calabi-Yau Algebra (UCYA) which provides a two-parameter

classification of CY −d spaces in terms of arity and dimension. This algebra is based on the

following ingredients:

• Universal composition rules

• Normal expansions and Diophantine decompositions

• Mirror symmetry

1To be more precise, the D line includes also A-type singularities, and the E line includes also D-type

and A-type singularities.



• Singularities and link with Cartan-Lie algebras

We have shown that this algebraic approach leads us to a natural formalism for a unified

description of complex geometry in all dimensions, including K3 spaces and Calabi-Yau

d-folds for any d.

Since the description of the UCYA is based on structures with two integer parameters, the

arity and dimension of the reflexive weight vectors (RWVs), we have classified the structures

of CYd spaces along the diagonal Ar, Dr, Er, ... lines in this plane. In this article we have

studied only the d-folds along the first three lines, presenting new results for low d and some

recurrence formulae valid for all d.

As an alternative to the Batyrev reflexive polyhedron method, we have proposed a new

description of CYd spaces based on the structures of the set of invariant monomials (IMs).

We have shown that the IM approach, which is based on Diophantine decompositions, is a

valuable alternative to the normal RWV expansion approach. We have demonstrated this

by comparing the results of both approaches for the first three diagonal lines, Ar, Dr and

Er, in the arity-dimension plot for CY3, CY4 cases.

We have shown that recurrence relations for conic, cubic and quartic monomials give us

the formulae for the numbers of IMs in arbitrary dimensions. This was illustrated in three

cases, for CYd spaces with {10}∆, {9}∆ and {7}∆fibres. This confirms that, in the framework

of the UCYA, the Calabi-Yau ‘genome’ can in principle be solved completely.

As an example of the extension procedure in the case of K3 manifolds, we classified [9]

the 95 different possible weight vectors ~k in 22 binary chains generated by pairs of extended

vectors, which included 90 of the total, and 4 ternary chains generated by triplets of extended

vectors, which yielded 91 weight vectors of which 4 were not included in the binary chains.

The one remaining K3 weight vector was found in a quaternary chain [9]. This algebraic

construction provides a convenient way of generating all the K3 weight vectors, and arranging

them in chains of related vectors whose overlaps yield further indirect relationships.

Moreover, our construction builds higher-dimensional Calabi-Yau spaces systematically

out of lower-dimensional ones, enabling us to enumerate explicitly their fibrations. As ex-

amples, we showed previously [9, 10] how our construction reveals elliptic and K3 fibrations

of CY3 manifolds. Our approach may also be used to obtain the projective weight vector



structure of a mirror manifold, starting from those of a given Calabi-Yau manifold.
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Figure 3: Lattice illustrating recurrence relations for the numbers of conic, cubic and quartic
monomials.

One can see from the figure 3 that the IMs determine completely the fibration structures

of the 22 K3 chains:



{IM}4 7→
(

1 · {4}∆

)

+
(

2 · {10}∆

)

+
(

2 · {5}∆ + 1 · {5}2

)

+
(

4 · {9}∆ + 2 · {9}2

)

+
(

7 · {7}∆ + 1 · {7}2

)

+
(

1 · {6}2

)

+
(

1 · {8}2

)

7→ {22} (7)

This expansion in terms of fibration structures is very helpful for extending these K3 results

to more general CYd spaces, via recurrence relations. As we show later, each of the terms

{10, 4, ...}∆,2,... in the expansion has its own recurrence relation, of which we later derive

several examples, indicated in bold script: 2 · {10}∆, etc., providing complete results in any

number of dimensions for the numbers of CYd spaces with these particular fibrations. A

similar recurrence formula could be derived for any analogous fibration.

There are fixed types and numbers of IMs which determine the structures of the full 259

(irreducible 161) chains, and they are similar to those we already indicated for the K3 case,

as seen, for example, in the following figure 3.

{IM}5 7→
(

9 · {4}∆ + 4 · {10}∆

)

+
(

16 · {5}∆ + 5 · {5}2 + 1 · {5}2′

)

+
(

11 · {9}∆ + 5 · {9}2 + 1 · {9}2′

)

+
(

28 · {7}∆ + 7 · {7}2 + 1 · {7}Quint

)

+
(

8 · {6}2 + 1 · {6}Quint

)

+
(

6 · {8}2 + 1 · {8}Quint

)

7→ {161} (8)

A further reduction in the number of chains has to be considered, from the 5,607 6-

dimensional 4-vector chains to 2111 independent chains. We have already mentioned that



there are different types of IMs even among the cubics {3} and quartics {4}, and the number

of different conics grows monotonically with increasing dimension n. We have also already

remarked that there exists a recurrence formula for all types of IMs with arbitrary dimen-

sion n, and have already discussed the reccurences of the Weierstrass IMs {3W} and {4W}.

The possible types of cubic {3}, quartic {4} and double conic IMs which describe the 2111

irreducible CY3 chains have different structures, corresponding to the different types of in-

tersections, that we can illustrate by the following expression:

{IM}6 7→
(

37 · {4}∆ + 7 · {10}∆

)

+
(

66 · {5}∆ + 27 · {5}2 + 6 · {5}2′

)

+
(

24 · {9}∆ + 11 · {9}2 + 5 · {9}2′

)

+
(

84 · {7}∆ + 28 · {7}2 + 5 · {7}Quint + 1 · {7}Sixt

)

+
(

36 · {6}2 + 5 · {6}Quint

)

+
(

21 · {8}2 + 5 · {8}Quint

)

7→ {2111} (9)

The recurrence relation for Calabi-Yau spaces with elliptic fibres {10}∆ can be extended

to the cases of CYd spaces with K3 fibres, described by ~k4 = (1, 1, 1, 1)[4], whose algebraic

equation includes the 35-point monomial and its mirror with 5 points. The IM 4 for this K3

space contains the four quartic monomials P1, P2, P3, P4 obeying the Diophantine equation:

(P1 +P2+P3+P4)/4 = E4. These monomials have in addition one very important condition:

Pi−Pj should be divisible by 4 for each choice of i, j = 1, 2, 3, 4, i 6= j. The types of different

n-dimensional {IM}4, describing the CYd : n = d + 2 ≥ 4 spaces with {35}∆ fibres are

constructed only from the numbers 4 and 0. The number 1 will play an additional role.

Therefore, similarly to the case of the third Er line, the recurrence formulae for these IMs

will be determined from the expansions of positive integer numbers in terms of four positive

integers, i.e., (see Figure 4).

At last we note [9] that the lattice structure of the K3 projective vectors obtained by a

binary construction exhibits a very interesting correspondence between the Dynkin diagrams
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for Cartan-Lie groups in the A, D series and E6,7,8 and particular reflexive weight vectors

(see also Figure 5):

~k1 = (1)hyp181yp



~k2 = (1, 1) ↔ Dr;

~k3 = (1, 1, 1) ↔ E6;

~k3 = (1, 1, 2) ↔ E7;

~k3 = (1, 2, 3) ↔ E8. (10)

This appearance in Calabi-Yau geometry of the A, D and E series of Cartan-Lie algebras

is connected [9] with specific quotient singular structures of considered geometry like as

Kleinian-Du-Val singularities C2/Zn.

For example, resolving the C2/Zn singularity gives for rational, i.e., genus zero, (-2)-curves

an intersection matrix that coincides with the An−1 Cartan matrix. For a general form of

the C2/G singularity, one can see [6] Any discrete subgroup of SU(2) can be projected into

a subgroup of SO(3), and thus can be related to the finite symmetry classification of three-

dimensional space. Thus, resolving the orbifold singularities yields a beautiful interrelation

between the classification of finite group rotations in three-space and the ADE classification

of Cartan-Lie algebras. Correspondingly, in UCYA one can see that the CYn- polyhedra

with (n ≥ 3) can be also constructed from n-copies of Coxeter-Dynkin diagrams.
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