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Abstract

The Hénon–Heiles system in the general form has been consid-
ered. In a few nonintegrable cases with the help of the Painlevé
test new solutions have been found as formal Laurent or Puiseux
series, depending on three parameters. One of parameters de-
termines a location of the singularity point, other parameters
determine coefficients of series. The obtained series converge in
some ring. For some values of these parameters the obtained Lau-
rent series coincide with the Laurent series of the known exact
solutions.

1 THE PAINLEVÉ PROPERTY AND IN-

TEGRABILITY

A Hamiltonian system in a 2s–dimensional phase space is called completely
integrable (Liouville integrable) if it possesses s independent integrals which
commute with respect to the associated Poisson bracket. When this is the
case, the equations of motion are (in principal, at least) separable and solu-
tions can be obtained by the method of quadratures.

When we study some mechanical or field theory problem, we imply that
time and space coordinates are real, whereas the integrability of motion equa-
tions is connected with the behavior of their solutions as functions of complex
time and (in the case of the field theory) complex spatial coordinates.

S.V. Kovalevskaya was the first, who proposed [1] (see also [2, 3]) to
consider time as a complex variable and to demand that solutions of the
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motion equations have to be single-valued, meromorphic functions on the
whole complex (time) plane. The work of S.V. Kovalevskaya has shown
the importance of application of the analytical theory of differential equa-
tions to physical problems. The essential stage of development of this theory
was a classification of ordinary differential equations (ODE’s) in order of
types of singularities of their solutions. This classification has been made by
P. Painlevé.

Let us formulate the Painlevé property for ODE’s. Solutions of a system
of ODE’s are regarded as analytic functions, may be with isolated singular
points. A singular point of a solution is said critical (as opposed to non-
critical) if the solution is multivalued (single-valued) in its neighborhood and
movable if its location depends on initial conditions2.

Definition. A system of ODE’s has the Painlevé property if its
general solution has no movable critical singular point [4].

An arbitrary solution of such system is single-valued in the neighborhood
of its singular point t0 and can be expressed as a Laurent series with a fi-
nite number of terms with negative powers of t − t0. If a system has not
the Painlevé property, but, after some change of variables, the obtained sys-
tem possesses this property, then the initial system is said to have the weak
Painlevé property.

Investigations of many dynamical systems [5–7] show that a system is
completely integrable only for such values of parameters, at which it has the
Painlevé property3. At the same time the integrability of an arbitrary system
with the Painlevé property has yet to be proved. There is not an algorithm
for construction of the additional integral by the Painlevé analysis. It is easy
to give an example of an trivially integrable system, which general solution is
not a meromorphic function [9]: H = 1

2
p2 +f(x), where f(x) is a polynomial,

which power is not lower than five.
The Painlevé test is any algorithm designed to determine necessary con-

ditions for a differential equation to have the Painlevé property. The original
algorithm, developed by P. Painlevé and used by him to find all the second
order ODE’s with Painlevé property [4], is known as the α-method. The
method of S.V. Kovalevskaya is not as general as the α–method, but much

2Solutions of a system with a time-independent Hamiltonian can have only movable
singularities.

3Arguments, which clarify the connection between the Painlevé analysis and the exis-
tence of motion integrals, are presented in [8].
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more simple4.
In 1980, motivated by the work of S.V. Kovalevskaya [1], M.J. Ablowitz,

A. Ramani and H. Segur [11] developed a new algorithm of the Painlevé test
for ODE’s. The remarkable property of this test is that it can be checked in
a finite number of steps. They also were the first to point out the connection
between the nonlinear partial differential equations (PDE’s), which are solu-
ble by the inverse scattering transform method, and ODE’s with the Painlevé
property. Subsequently the Painlevé property for PDE was defined and the
corresponding Painlevé test (the WTC procedure) was constructed [12, 13]
(see also [10, 14, 15]).

The algorithm for finding special solutions for ODE system in the form
of a finite expansion in powers of unknown function ϕ(t − t0) has been con-
structed in [16]. The function ϕ(t − t0) and coefficients have to satisfy some
system of ODE, often more simple than an initial one. This method has
been used [17] to construct exact solutions for certain nonintegrable systems
of ODE’s. With the help of the perturbative Painleve test [14] four-parameter
generalization of an exact three-parameter solution of the Bianchi IX cosmo-
logical model (Mixmaster university) has been constructed [18].

The aim of this paper is to find new special solutions for the generalized
Hénon–Heiles system using the Painlevé test. We obtain solutions as formal
Laurent or Puiseux series and find domains of their convergence.

2 THE HÉNON–HEILES HAMILTONIAN

In the 1960s, the models of star motion in an axial-symmetric and time-
independent potential were actively studied [19, 20]. Due to the symmetry
of the potential the considered system is equivalent to two-dimensional one.
However, for many polynomial potentials the obtained system has not the
second integral as a polynomial function. To answer the question about the
existence of the third integral Hénon and Heiles [20] considered the behav-
ior of numerically integrated trajectories. Emphasizing that their choice of
potential does not proceed from experimental data, they have proposed the
Hamiltonian

H =
1

2

(

x2
t + y2

t + x2 + y2
)

+ x2y − 1

3
y3, (1)

4Different variants of the Painlevé test are compared in [10, R. Conte paper]
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because: on the one hand, it is analytically simple; this makes the numer-
ical computations of trajectories easy; on the other hand, it is sufficiently
complicated to give trajectories which are far from trivial. Indeed, for low
energies trajectories (numerically integrated) always lay on well-defined two-
dimensional surfaces. On the other hand, for high energies many of these
integral surfaces are destroyed.

The generalized Hénon–Heiles system is described by the Hamiltonian:

H =
1

2

(

x2
t + y2

t + λx2 + y2
)

+ x2y − C

3
y3 (1′)

and the corresponding system of the motion equations:
{

xtt = −λx − 2xy,

ytt = −y − x2 + Cy2,
(2)

where xtt ≡ d2x
dt2

and ytt ≡ d2y
dt2

, λ and C are numerical parameters.
Due to the Painlevé analysis the following integrable cases of (2) have

been found:

(i) C = −1, λ = 1,
(ii) C = −6, λ is an arbitrary number,
(iii) C = −16, λ = 1

16
.

The Hénon–Heiles system is a model, not only actively investigated by
various mathematical methods5, but also widely used in physics, in particu-
lar, in gravitation [22, 23].

3 NONINTEGRABLE CASES

The general solutions of the Hénon–Heiles system are known only in inte-
grable cases [24], in other cases not only four-, but even three-parameter
exact solutions yet have to be found.

The Hénon–Heiles system as a system of two second order ODE’s is equiv-
alent to the fourth order equation6:

ytttt = (2C − 8)ytty − (4λ + 1)ytt + 2(C + 1)y2
t +

+
20C

3
y3 + (4Cλ − 6)y2 − 4λy − 4H,

(3)

5The history of study of the generalized Hénon–Heiles system see in [21].
6For given y(t) the function x2(t) is a solution of a linear equation. System (2) is

invariant to exchange x to −x.
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where H is the energy of the system.
To find a special solution of the given equation one can assume that y

satisfies some more simple equation. For example, the well-known solutions
in terms of the Weierstrass elliptic functions [25] satisfy the following first-
order differential equation:

y2
t = Ãy3 + B̃y2 + C̃y + D̃, (4)

where A, B, C and D are some constants. D̃ is proportional to energy H

(arbitrary parameter), therefore, solutions of (4) are two-parameter ones.
E.I. Timoshkova [26] generalized equation (4):

y2
t = Ãy3 + B̃y2 + C̃y + D̃ + G̃y5/2 + Ẽy3/2 (5)

and found new one-parameter sets of solutions of the Hénon–Heiles system
in nonintegrable cases (C = − 4

3
or C = − 16

5
, λ is an arbitrary number).

These solutions (i.e. solutions with G̃ 6= 0 or Ẽ 6= 0) are derived only at
D̃ = 0, therefore, substitution y = %2 gives:

%2
t =

1

4

(

Ã%4 + G̃%3 + B̃%2 + Ẽ% + C̃
)

. (6)

The general solution of (6) has one arbitrary parameter and can be expressed
in elliptic functions.

In this paper I analyze system (2) at C = − 16
5

or C = − 4
3

and arbitrary
value of λ. The case C = − 16

5
and λ = 1

9
has been analyzed in details in my

paper [21]. In this case some solutions of (6) can be expressed in elementary
trigonometric functions.

4 RESULTS OF THE PAINLEVÉ TEST

We assume that the behavior of solutions in a sufficiently small neighborhood
of the singularity is algebraic, it means that x and y tend to infinity as some
powers of t − t0:

x = aα(t − t0)
α and y = bβ(t − t0)

β, (7)

where α, β, aα and bβ are some constants. We assume that real parts of α

and β are less then zero, and, of course, aα 6= 0 and bβ 6= 0.
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If α and β are integer numbers, then substituting

x = aα(t − t0)
α +

Nmax
∑

k=1+α

ak(t − t0)
k, y = bβ(t − t0)

β +
Nmax
∑

k=1+β

bk(t − t0)
k

one can transform the ODE system into a set of linear algebraic systems in
coefficients ak and bk. With the help of some computer algebra system, for
example, the system REDUCE or MATEMATICA, these systems can
be solved step by step and solutions can be automatically found with any
accuracy. But previously one has to determine values of constants α, β,
aα and bβ and to analyze systems with zero determinants. Such systems
correspond to new arbitrary constants or have no solutions. Powers at which
new arbitrary constants enter are called resonances. The Painlevé test gives
all information about possible dominant behaviors and resonances. Moreover,
the results of the Painlevé analysis point out cases, in which it is useful to
include into expansion terms with fractional powers of t − t0.

For the generalized Hénon-Heiles system there exist two possible domi-
nant behaviors and resonance structures [7, 27]:

Case 1: Case 2: (β < <e(α) < 0)

α = −2, α =
1±
√

1−48/C

2
,

β = −2, β = −2,

aα = ±3
√

2 + C, aα = c1 (arbitrary),

bβ = −3, bβ = 6
C

,

r = −1, 6, 5
2
−

√
1−24(1+C)

2
, 5

2
+

√
1−24(1+C)

2
. r = −1, 0, 6, ∓

√

1 − 48
C

.

In the Table the values of r denote resonances: r = −1 corresponds
to arbitrary parameter t0; r = 0 (in the Case 2) corresponds to arbitrary
parameter c1. Other values of r determine powers of t, to be exact, tα+r for
x and tβ+r for y, at which new arbitrary parameters enter (as solutions of
systems with zero determinants).

For integrability of system (2) all values of α and r have to be integer
(or rational) and all systems with zero determinants have to have solutions
at all values of included in them free parameters. It is possible only in the
cases (i)—(iii). Those values of C, at which α and r are integer (or rational)
numbers either only in the Case 1 or only in the Case 2, are of interest for
search of special solutions.
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5 NEW SOLUTIONS

5.1 Finding of solutions in the form of formal Laurent
series

Let us consider the Hénon–Heiles system with C = − 16
5

to find special
solutions. In the Case 2 α = − 3

2
and r = −1, 0, 4, 6, hence, in the

neighborhood of the singular point t0 we have to seek x in such form that
x2 can be expand into Laurent series, beginning from (t − t0)

−3. Let t0 = 0,
substituting

x =
√

t

(

c1t
−2 +

∞
∑

k=−1

akt
k

)

and y = − 15

8
t−2 +

∞
∑

k=−1

bkt
k

in (2), we obtain the following sequence of linear system in ak and bk:































(

k2 − 4
)

ak + 2c1bk = −λak−2 − 2

k−1
∑

j=−1

ajbk−j−2,

(

(k − 1)k − 12
)

bk = − bk−2 −
k−1
∑

j=−2

ajak−j−3 −
16

5

k−1
∑

j=−1

bjbk−j−2.

(8)

If k = 2 or k = 4, then the determinant of (8) is equal to zero. To
determine a2 and b2 we have the following system:



























c1

(

557056c8
1 + (15552000λ − 4860000)c4

1 + 864000000b2 +

+ 108000000λ2 − 67500000λ + 10546875
)

= 0,

818176c8
1 +

(

15660000λ− 4893750
)

c4
1−

− 810000000b2 − 6328125 = 0.

(9)

As one can see this system does not include terms, which are proportional
to a2, hence, a2 is an arbitrary parameter (a constant of integration). We
discard the solution with c1 = 0 and obtain that system (9) has solutions if
and only if:

c4
1 =

1125(4
√

35(2048λ2 − 1280λ + 387) − 1680λ + 525)

167552
(10.1)
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or

c̃4
1 =

1125(−4
√

35(2048λ2 − 1280λ + 387) − 1680λ + 525)

167552
. (10.2)

We obtain new constant of integration a2, but we must fix c1, so number
of constants of integration is equal to 2. It is easy to verify that b4 is an
arbitrary parameter, because the corresponding system is equivalent to one
linear equation. So, using Painlevé test, we obtain solutions which depend on
three parameters, namely t0, a2 and b4. For given λ we obtain four different
three-parameter solutions. Each solution generalizes exact one-parameter
solution in terms of elliptic functions.

When a formal series is obtained the question about its convergence arises.
The convergence of psi-series solutions of the generalized Hénon–Heiles sys-
tem on some real time interval has been proved in [27]. For Laurent series
solutions it is easy to find conditions, at which the obtained series converge
at 0 < |t| 6 1 − ε, where ε is any positive number. Our series converge in
the above-mentioned ring, if ∃N such that ∀n > N |an| 6 M and |bn| 6 M .
Let |an| 6 M and |bn| 6 M for all −1 < n < k, then from (8) we obtain:

|ak| 6
2M(k + 1) + |λ| + 2|c1|

|k2 − 4| M, |bk| 6
21Mk + 26M + 5

5|k2 − k − 12| M. (11)

It is easy to see that there exists such N that if |an| 6 M and |bn| 6 M

for −1 6 n 6 N , then |an| 6 M and |bn| 6 M for −1 6 n < ∞. So one
can prove the convergence, analyzing values of a finite number of the first
coefficients of series.

For C = − 4
3

we obtain the analogical situation. Each of four one-
parameter periodic solutions, which have been found in [26], can be gen-
eralized to three-parameter Laurent series solutions.

Let us consider solutions of equation (4). For some values of C two-
parameter solutions in terms of the Weierstrass elliptic functions can be gen-
eralized. For example, if C = − 9

8
, then some resonances are half-integer.

Substituting

x =
∞
∑

k=−4

ãkt
k/2 and y =

∞
∑

k=−4

b̃kt
k/2

in (2) , we obtain three-parameter solutions as formal Puiseux series for any
λ.
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CONCLUSION

Using the Painlevé analysis one can not only find integrable cases of dynam-
ical systems, but also construct special solutions in nonintegrable cases.

We have found the special solutions of the generalized Hénon–Heiles sys-
tem with C = − 16

5
and C = − 4

3
as formal Laurent series, depending on three

parameters. For some values of two parameters the obtained solutions coin-
cide with the known exact periodic solutions. At C = − 9

8
two-parameter

solutions in terms of the Weierstrass elliptic functions can be generalized
to three-parameter ones. New solutions have been found as formal series.
In [27] it has been proved that psi-series solutions have nonzero domain of
convergence, thereby the obtained formal solutions are actual solutions.

The author is grateful to R. I. Bogdanov and V. F. Edneral for valuable
discussions and E. I. Timoshkova for comprehensive commentary of [26].
This work has been supported by the Russian Foundation for Basic Research
under grants N◦ 00-15-96560 and 00-15-96577, and grant of the scientific
Program ”Universities of Russia” N◦ UR.02.03.002.
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