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Abstract

Gauge field (Yang–Mills) systems supporting finite action/energy topo-
logically stable solutions in higher dimensions are reviewed. The cases of
gauged Higgs and gauged Sigma systems are emphasised.

1 Gauge fields on M2n

Using the notation F (2) = Fµν for the 2-form Yang–Mills (YM) curvature, the
2p-form YM tensor

F (2p) = F (2) ∧ F (2) ∧ ... ∧ F (2) , p − times (1)

is a p fold totally antisymmetrised product of the 2-form curvature.
In 2n dimensions, partitionaing n as n = p+ q, the Hodge dual of the 2q-form

field F (2q), namely (?F (2q))(2p), is a 2p-form.
Starting from the inequality

Tr[F (2p) − κ ?F (2q)]2 ≥ 0 , (2)

it follows that
Tr[F (2p)2 + κ2 F (2q)2] ≥ 2κ Cn , (3)

where Cn is the n-th Chern-Pontryagin density. In (2) and (3), the constant κ
has the dimension of length to the power of (p − q).

The (generalised) YM systems in (even) higher dimensions are characterised
by Lagrangians defined by the densities on the left hand side of (3). When in
particular p = q, then these systems are conformally invariant.
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The inequality (3) presents a topological lower bound which guarantees that
finite action solutions to the Euler–Lagrange equations exist. Of particular inter-
est are solutions to first order self-duality equations which solve the second order
Euler–Lagrange equations, when (3) can be saturated.

For M2n = R2n, the self–duality equations support nontrivial solutions only
if q = p,

F (2p) = ?F (2p) . (4)

For p = 1, i.e. in four Euclidean dimensions, (4) is the usual YM selfduality euqa-
tions supporting instanton solutions. Of these, the spherically symmetric [1] and
axially symmetric[2] instantons are the ones relevant to us here. This is because
for p ≥ 2, i.e. in dimensions eight and higher, only sphericaly symmetric [3] and
axially symmetric [4] solutions can be constructed, because in these dimensions
(4) are overdetermined [5].

In the r � 1 region, all these ’instanton’ fields on R2n, whether self–dual or
not, asymptotically behave as pure–gauge

A → gdg−1

In addition to (regular) instantons, the Euler–Lagrange equations satisfy (sin-
gular) ’Meron’ solutions [8] in 4p dimensions when the Lagrangian in (3) is con-
formally invariant, generalising the Meron solutions [9] of the usual YM system
for p = 1.

For M2n = G/H, namely on compact coset spaces, the self–duality equations
support nontrivial solutions for all p and q,

F (2p) = κ ?F (2q) (5)

where the constant κ is some power of the ’radius’ of the (compact) space. The
simplest examples are M2n = S2n, the 2n-spheres [6], and M2n = CPn, the
complex projective spaces [7].

2 Higgs models on Rd

Higgs fields have the same dimensions as gauge connections and appear as the
extra components of the latter under dimensional reduction, when the extra di-
mension is a compact symmetric space. In general one can employ a linear combi-
nation of inequalities (3), for all p ≤ d/4 and q ≤ d/4. Restricting, for simplicity
to the 4p dimensional conformal invariant systems in (3), i.e. to p = q = d/4,
the descent over the compact space K4p−d is described by

∫

Rd×K4p−d
F (2p)2 ≥

∫

Rd×K4p−d
C2p . (6)

Imposing the symmetry appropriate to K4p−d on the gauge fields results in the
breaking of the original gauge group g to, say, the residual gauge group ḡ for the
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fields on Rd. Performing then the compact integration over K4p−d results in the
Lagrangian L[A, φ] of the residual Higgs model on Rd. A here is the connection
taking values in the algebra of ḡ and φ is the Higgs multiplet whose structure
under ḡ depends on the detailed choice of K4p−d, implying the following gauge
transformations

A → ḡAḡ−1 + ḡdḡ−1

and depending on the choice of K4p−d,

φ → ḡφḡ−1 , or , φ → ḡφ , etc.

The inequality (3) leads, after this dimensional descent, to

∫

Rd

L[A, φ] ≥
∫

Rd

∇.Ω[A, φ] (7)

=
∫

Σd−1

Ω[A, φ] , (8)

where L[A, φ] = L[F ,Dφ, |φ|2, η2] is the residual Lagrangian in terms of the
residual gauge connection A and its curvature F , the Higgs fields φ and its
covariant derivative Dφ and the inverse of the compactification ’radius’ η. The
latter is simply the VEV of the Higgs field, seen clearly from the typical form of
the components of the curvature F on the extra (compact) space K4p−d

F |K4p−d ∼ (η2 − |φ|2) ⊗ Σ ⇒ lim
r→∞

|φ|2 = η2 (9)

where Σ are spin-matrices/Clebsch-Gordan coefficients. ‘ Note that the integrand
on the right hand side of (7) is a total divergence [10] just like the p-th Chern-
Pontryagin density from which it has descended. It is reasonable to call the
density Ω[A, φ] the residual Chern-Simons density.

2.1 Some properties of Ω[A, φ] and L[A, φ]

• When 4p − 1 is odd, Ω[A, φ] is gauge invariant

• When 4p − 1 is even, Ω has the form

Ω[A, φ] = ΩCS[A] + Ω0[F ,Dφ, |φ|2, η2]

where Ω0 is a gauge invariant density and ΩCS is the gauge variant Chern-
Simons density in those (even) dimensions. Hence Ω is gauge variant.

• When 4p − 1 is even the residual gauge field consists of two distinct, say
n × n, gauge connections in the algebra of the residual gauge group ḡ, say
n × n (anti)Hermitian fields Aµ and Bµ, and, an Abelian connection aµ.
The Higgs field then consists of the n × n complex array ϕ.
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In the special case where K4p−d = S4p−d, i.e. when the compact extra space
is a sphere, both the residual Lagrangian and the residual Chern-Simons
densities can be expressed in terms of the ’chirally symmetric’ multiplets

(A,B, ϕ) 7→ A =

[

A(+) 0
0 A(−)

]

, Φ =

[

0 ϕ
ϕ† 0

]

.

With the appropriate choice of n the residual connection is in the algebra of
SO(d). This is the main case of interest and leads to the construction of Wu-
Yang [11] fields in all dimensions, and their associated singular connections
in the Dirac gauge.

With any other choice of the compact space the residual theory will not
exhibit this property of chiral symmetry, for example with p = 2 and d = 4

– K4 = S4 leads to a SO(4)×U(1) residual connection which is chirally
symmetric

– K4 = CP2 leads to SU1(2)×SU2(2)×U(1) residual connection which
is not chirally symmetric.

• The detailed features of the Higgs (self-interaction) potential will depend
on the mode of descent, namely on the choice of the compact space K4p−d.
For example for K = S2 ×S2 × ..., each S2 will be characterised by its own
radius, and in this example there will arise the vacuum expectation values
η1, η2,... each via the generic form (9) with the appropriate Σ’s for each η.
For a direct product compact space consisting of two 2-spheres, the residual
Lagrangian will typically be of the form

Lres = L0 + (η2
2)

2p ,

in which L0 vanishes asymptotically by the finite action/energy condition.
Clearly the ’cosmological constant’ term (η2

2)
2p causes the action/energy to

diverge, thus eliminating the usefulness of models arising from such modes
of descent.

• Saturation of the Bogomol’nyi inequality (7)-(8) is impossible in the generic
case because the resulting Bogomol’nyi equations are overdetermined [5].
The only examples for which the Bogomol’nyi equations have nontrivial
solutions pertain to:

– in d = 2, for models characterised by all possible values of p and
linear combinations thereof. These are the two dimensional generalised
Abelian Higgs models [12] whose solutions are intimately related to
the axially symmetric self-dual solutions of the conformal invariant
YM systems in 4p dimensions [4].

– in d = 3, and only for the model characterised by p = 1, i.e. for the
Georgi-Glashow model in the Prasad-Sommerfield limit.
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3 Gauged sigma models

In contrast to Higgs fields, sigma model fields (which take their values on a
compact coset space) are dimensionless and cannot be identified as components
of a connection in higher dimensions. Their gauging prescription therefore is not
as constrained (and hence unique) as that for Higgs models.

Perhaps the most important difference between Higgs models and sigma mod-
els is the fact that the equations of motion of sigma models support solitons in

the absence of a gauge field, which is impossible for a Higgs model, cf there are
no solitons of (conventional) Goldstone models.

Using the criterion of gauging to be that the action/energy of the gauged
system is bounded from below by a topological charge, sigma models can be
categorised in two main families, each characterised by the topological charge.
On the one hand we have the gauged Grassmannian models with the Pontryagin
charge of the gauge field as the topological charge. On the other we have the d
dimensional O(d + 1) models whose fields take values on Sd, with action/energy
bounded by the winding number, or the degree of the map. The latter is of greater
interest since its solitons can survive the gauge decoupling limit, while in the case
of the former the Pontryagin charge disappears under gauge decoupling.

3.1 Gauged Grassmannian models

Grassmannian co-ordinates (fields) Z have m × n complex values subject to the
n × n constraint

Z†Z = 1I , (10)

while the m × m symbol (1I − ZZ†) is a projection operator. These systems,
typified by the kinetic terms

Tr|D̃µZ|2
def
= TrD̃µZ†D̃µZ , Tr|D̃µZ

†∧D̃νZ|2 , Tr|D̃µZ†∧D̃νZ∧D̃ρZ
†|2 , etc ,

(11)
possess an inherent (local gauge) freedom in their definitions. The covariant
derivatives in (11) are defined in terms of a composite connection Bµ

D̃µZ = ∂µ − ZBµ , Bµ = Z†∂µZ . (12)

The simplest prescription of gauging (and the only one known to this speaker) is
replacing the composite gauge connection Bµ describing the inherent
gauge freedom of the system, by a dynamical gauge connection Aµ with
nonvanishing curvature[13, 14]. Thus one replaces the covariant derivative D̃µ

in (11) and (12) by

DµZ = ∂µ − ZAµ , [Dµ, Dν]Z = −ZFµν . (13)
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To examine the topological lower bound on a typical gauged Grassmannian
model, consider the simplest case in dimensions d > 2 (in which case the Grass-
mannian CP1 coincides with S2), namely the SO±(4) gauged system in d = 4.
There, the Bogomol’nyi inequality

Tr[D[µZ
†Dν]Z − ?Fµν]

2 ≥ 0 , (14)

results in

Tr(|Fµν |
2 + |D[µZ

†Dν]Z|2) ≥ TrFµν
?Fµν + ∂µTr?FµνDνZ . (15)

The second term in (15) decays too fast and contributes nothing to the surface
integral, so the only contribution comes from the leading term, namely the Pon-
tryagin charge. This is exactly the same as in the Higgs models. Thus, at least
in the context of gauging a Grassmannian model with the given prescription, the
soliton does not survive the gauge decoupling limit, thus limiting its interest.

3.2 SO(N) gauged O(d + 1) models on Rd (2 ≤ N ≤ d)

The d dimensional O(d + 1) models, the best known example of which is the
Skyrme models [15] (for d = 3), are described by the Sd valued fields χa (a =
1, 2, .., d + 1), subject to

|χa|2 = 1 .

Partitioning the label a as a = α, A, with α = 1, 2, .., N and A = N + 1, N +
2, .., d + 1, the gauging prescription is stated as

χα → (gχ)α ⇒ Dµχ
α def

= ∂µχα + Aµχα → (gDµχ)α ; A[αβ]
µ ∈ so(N)

χA → χA ⇒ Dµχ
A def

= ∂µχA → DµχA ,

such that the ungauged components of the field labeled by A include the com-
ponent A = d + 1, on the understanding that one requires the usual asymptotic
conditions

lim
r→0

χd+1 = −1 , lim
r→∞

χd+1 = +1 . (16)

In contrast to the Grassmannian case above, it is obvious that going to the gauge
decoupling limit here, i.e. setting Aµ = 0, reverts to the ungauged system which
supports a soliton. Thus the topological charge of both the gauged and the
ungauged systems must be equal. This criterion was first used in [16] for d = 3
and later applied in [17] for d = 2.

The definition [18] of the topological charge of the gauged O(d + 1) model
proceeds as follows. Up to a numerical factor of the angular volume, the winding
number density is

%0 ∼ εµ1µ2...µd
εa1a2...adad+1∂µ1

χa1∂µ2
χa2 ...∂µd

χadχd+1 . (17)
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%0 being gauge variant, it is unsatisfactory as a definition for the topological
charge density, which must be gauge invariant.

On the other hand, the volume integral of the gauge covariantised version of
(17),

%G ∼ εµ1µ2 ...µd
εa1a2...adad+1Dµ1

χa1Dµ2
χa2 ...Dµd

χadχd+1 , (18)

is not an integer, and hence also not suitable as a definition for the topological
charge density.

The relation between %0 and %G on the other hand, offers the resolution to
this problem. Writing

%G = %0 + W[A[αβ]
µ ; χa] , (19)

the quantity denoted by W is manifestly gauge variant. It was found however
that for SO(d) gauging, with d = 2, 3, 4 [18], and for SO(N) gauging with (N =
2, d = 3) [19], and (N = 3, 2; d = 4), the density W could be decomposed in
two parts

W[A[αβ]
µ ; χa] = V[F [αβ]

µν , Dµχα, χA] + ∂µΩµ[A[αβ]
µ ; χa] (20)

such that the first term V is gauge invariant and the second, which is necessarily
gauge variant is a total divergence.

What is crucial now is that the surface integral of the density Ωµ vanishes
by virtue of finite action/energy conditions imposed on the corresponding La-
grangian density.

For all odd d this is immediatey true, while in all even d the leading term
in the density Ωµ always turns out to be ΩCS, the Chern-Simons density of the
given dimensions, whose surface integral certainly does not vanish. But this can
be remedied by redefining Ωµ by subtracting from it ΩCS, and preserving the
equality (20) by adding the divergence of this Chern-Simons density (i.e. the
Pontryagin density) to V, i.e. for even d (20) is replaced by

W̃[A[αβ]
µ ; χa] = Ṽ[F [αβ]

µν , Dµχ
α, χA] + ∂µΩ̃µ[A[αβ]

µ ; χa]

Ṽ = V + Cd

Ω̃ = Ω − ΩCS . (21)

Clearly, Ṽ is gauge invariant. This enables the definitions of the topological
charge densities, for odd and even d respectively, as

% = %G − V (22)

= %0 + ∇.Ω (23)

% = %G − Ṽ (24)

= %0 + ∇.Ω̃ . (25)

It follows from (23) and (25) that the volume integral of % equals the widing

number, or, the degree of the map. At the same time it follows from (22) and (24)
that % is gauge invariant, so that the latter definitions of the topological charge
can be employed to establish Bogomol’nyi inequalities supplying topological lower
bounds on the actions/energy of candidate models.

7



The d dimensional gauged O(d + 1) sigma models (supporting solitons) have
certain features contrasting with the d dimensional Higgs and gauged Grassman-
nian models (supporting solitons) discussed above.

• For the Higgs and gauged Grassmannian models the soliton does not survive
the gauge decoupling limit while for the gauged O(d + 1) models it does.

• For the Higgs models the gauge group must be SO(d), while for the gauged
O(d + 1) models it can be SO(N) for any 2 ≤ N ≤ d.

• For the Higgs models the finite action/energy conditions fix the asymp-
totic values of the gauge field functions uniquely, while for the gauged
O(d + 1) models the gauge field functions in general turn out to be multi-

valued asymptotically. As a result the solutions feature certain bifurcation
patterns [20] which may be of some physical interest.
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