
Correspondence of States and Observables for
BRST-BFV, Dirac and Refined Algebraic
Quantizations of Constrained Systems

O.Yu.Shvedov
Sub-Dept. of Quantum Statistics and Field Theory,

Dept. of Physics, Moscow State University,
119992, Moscow, Vorobievy Gory, Russia

Abstract

Correspondence between BRST-BFV, Dirac and refined algebraic approaches to

quantize constrained systems is analyzed. Refined algebraic quantization approach

based on modifying an inner product rather than on imposing the constraints is

generalized to the case of nontrivial structure functions. The results are illustrated

for the simple example and for the semiclassical theory.

1. Different approaches have been developed to quantizing constrained
systems. The most serious difficulty for all of them is to introduce an inner
product.

Let us start from the simplest example. Consider the system with one
degree of freedom. States are specified then by the wave functions Ψ(x),
x ∈ R. Let Λ = p be a constraint.

The Dirac approach [1] tells us that physical states should obey an addi-
tional condition Λ̂Ψ ≡ −i∂Ψ

∂x
= 0, so that Ψ(x) = Ψ0 = const. One notices

that the inner product of the form
∫

dx|Ψ(x)|2 = |Ψ0|2 · ∞ diverges.
To define nevertheless the physical inner product, one usually [2] imposes

additional gauge conditions of the type X = 0 such that {X; Λ} 6= 0 clas-
sically. For the case X = x, one should consider the wave functions on the
”gauge surface” x = 0 only, so that the inner product will be |Ψ(0)|2. Gen-
erally, the gauge fixing approach may depend on choice of the additional
conditions and lead to the problem of Gribov copies [3].

However, there is an additional quantization approach (”refined algebraic
quantization” [4,5]) without difficulties with inner products. Instead of im-
posing constraints on physical states, one modifies the inner product. For
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example Λ = p, the modification is

< Φ, Φ >=
∫

dxΦ∗(x)

(

2πδ

(

−i
∂

∂x

)

Φ

)

(x). (1)

Wave functions Φ (”auxiliary states”) may be arbitrary. Since

2πδ(−i
∂

∂x
)Φ(x) =

∫

dαeiα(−i ∂

∂x
)Φ(x) =

∫

dαΦ(x + α) =
∫

dαΦ(α),

an explicit form of the inner product (1) is < Φ, Φ >= | ∫ dαΦ(α)|2. One can
notice that wave functions Φ(x) such that

∫

dxΦ(x) = 0 are of zero norm.
They are equivalent then to zero. Two auxiliary states Φ1 and Φ2 are called
equivalent iff

∫

dxΦ1(x) =
∫

dxΦ2(x). Equivalence classes may be viewed
as physical states; they are specified by numbers

∫

dxΦ(x). Auxiliary states
related by formula Φ→ Φ− i∂X

∂x
specify the same physical state.

Thus, in the Dirac approach the wave function Ψ is defined uniquely but
must satisfy the constraint Λ̂Ψ = 0, while in the refined algebraic quanti-
zation the wave function Φ may be arbitrary but is defined up to a gauge
transformation Φ→ Φ + Λ̂X.

The correspondence of Dirac and refined algebraic states Ψ and Φ is given
by the relation Ψ(x) = 2πδ(−i ∂

∂x
)Φ(x). Explicitly, Ψ(x) =

∫

dαΦ(α), so that
the Dirac condition ∂Ψ

∂x
= 0 is satisfied. The prescription ||Ψ||2 = |Ψ(0)|2 is

also obtained.
2. The inner product of the type (1) may be written for the more general

cases as well:
< Φ, Φ >= (Φ, ηΦ) (2)

where the operator η should satisfy the following properties:

η+ = η; η ≥ 0; ηΛ̂a = 0. (3)

Then two auxiliary states Φ are called equivalent iff their difference is of
zero norm; equivalence classes are viewed as physical states. For example,
states Φ = Λ̂aX

a are obviously equivalent to zero; therefore, there is a gauge
freedom: two auxiliary states

Φ→ Φ + Λ̂aX
a (4)
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correspond to the same physical state. The correspondence between Ψ- and
Φ-states is

Ψ = ηΦ. (5)

The Dirac wave function Ψ satisfies then the constraint condition

Λ̂+
a Ψ = 0. (6)

3. For the closed-algebra case, the operator η has been constructed ex-
plicitly. For the abelian group [4] [Λ̂a; Λ̂b] = 0; Λ̂a = Λ̂+

a , a, b = 1, M with
the continuous spectrum of Λ̂a one sets

η =
∏

a 2πδ(Λ̂a);

< Φ, Φ >= (Φ,
∏

a 2πδ(Λ̂a)Φ).
(7)

For the nonabelian case, the constraints may have nontrivial imaginary
parts [6]

Λ̂a = Λ̌a −
i

2
f b

ab; [Λ̌a; Λ̌b] = if c
abΛ̌c; Λ̌+

a = Λ̌a. (8)

The operator η is constructed as follows. Let La be generators of the Lie
algebra, [La; Lb] = if c

abLc. Then the mapping La 7→ Λ̌a is a representation
of the Lie algebra. Consider the corresponding representation of the Lie
group Ť : exp(iµaLa) 7→ exp(iµaΛ̌a). By Ad(La) we denote the adjoint
representation of the Lie algebra, (Ad(La)ρ)c = if c

abρ
b, while Ad{g} is an

adjoint representation of the group: (Ad{g}ρ)c = (exp A)c
bρ

b with Ac
b =

−µaf c
ab, g = exp(iµaLa). Then [5]

η =
∫

dRg(detAd{g})−1/2Ť (g). (9)

To introduce operator η in general case, one should investigate the re-
lationship between Dirac, refined algebraic and BRST-BFV approaches (see
[7] for more details).

4. To develop the BRST-BFV approach [8], it is necessary to introduce
additional degrees of freedom: Lagrange multipliers and momenta λa, πa,
a = 1, M , ghosts and antighosts Ca, Ca, canonically conjugated momenta
Πa, Π

a, a = 1, M . The nontrivial (anti)commutation relations are: [λa, πb] =
iδa

b , [Ca, Πb]+ = δa
b , [Ca, Π

b]+ = δb
a. Operators Ca and Πb are anti-Hermitian,
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others are Hermitian. The main object of the BRST-BFV method is the
B-charge Ω. For the closed-algebra case, it has the form

Ω = CaΛ̌a −
i

2
fa

bcΠaC
bCc − i

2
fa

baC
b − iπaΠ

a. (10)

It is formally Hermitian and nilpotent,

Ω+ = Ω; Ω2 = 0. (11)

For the open-algebra case with nontrivial structure functions, the B-charge
is looked for in the following form:

Ω = −iπaΠ
a + CaΛ̂a + ... + Ωnb1...bn−1

a1...an
Πb1 ...Πbn−1

Ca1 ...Can + ... (12)

Features of Dirac and refined algebraic quantizations are presented in the
BRST-BFV approach. Analogously to the Dirac case, physical states Υ are
not arbitrary but should satisfy the BRST-BFV condition

ΩΥ = 0, (13)

Similarly to the refined algebraic approach, the gauge freedom is also allowed,
the gauge transformation between equivalent states is

Υ→ Υ + ΩX, (14)

States Υ and e[Ω,ρ]+Υ are then also equivalent.
Another requirement is that physical states should be of zero ghost num-

ber, N = ΠaCa − ΠaC
a, so that NΥ = 0.

5. The most nontrivial problem is to introduce an inner product for the
BRST-BFV formalism. Consider the Schrodinger representation for the BFV
wave function Υ, Υ = Υ(q, λ, Π, Π), q and λ are Bose variables, Π and Π are
Grassmannian. The operators are rewritten then as Ca = ∂

∂Πa

; Ca = ∂
∂Πa ;

πa = −i ∂
∂λa ; pi = −i ∂

∂qi , the left derivatives are considered here. The inner

product is indefinite. Formally, it is as follows [9]

(Υ1, Υ2) =
∫

dq
M
∏

a=1

dµadΠadΠa(Υ1(q, iµ, Π, Π))∗Υ2(q,−iµ, Π, Π). (15)

The integration and conjugation rules are (Πa1
...Πal

Πb1 ...Πbs)∗ =
(−1)sΠbs ...Πb1Πal

...Πa1
,
∫

dΠaΠa = 1,
∫

dΠaΠa = 1. The inner product
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space (15) requires additional investigation, since indefinite inner product
spaces are specified not only by indefinite inner product but also by Hilbert
topology: a class of allowed BFV wave functions Υ should be specified.

The inner product (15) seems to be divergent, but this is not the case.
Namely, a typical BFV wave function is as follows. Consider our simplest
example, Λ = −i∂/∂q, Ω = −i ∂

∂q
∂

∂Π
− ∂

∂λ
Π. Let the dependence of the wave

function on Fermi variables be Gaussian, Υ(q, λ, Π, Π) = exp[−αΠΠ]Υ0(q, λ).
Then the B-condition (13) reads (iα ∂

∂q
− ∂

∂λ
)Υ0(q, λ) = 0, so that Υ0(q, λ) =

Φ(q + iαλ) and

Υ(q, λ, Π, Π) = exp[−αΠΠ]Φ(q + iαλ). (16)

The inner product (15) is taken then to the
form

∫

dqdµdΠdΠ exp[−2αΠΠ]Φ∗
1(q−αµ)Φ2(q+αµ). Integration over Grass-

mannian variables gives us factor 2α, while after substitution q − αµ = q1,
q + αµ = q2 one finds (Υ1, Υ2) =< Φ1, Φ2 >=

∫

dq1Φ
∗
1(q1)

∫

dq2Φ2(q2). This
is in agreement with the refined algebraic quantization. We see that Φ-states
and B-states correspond as

Φ(q) = Υ(q, 0, 0, 0) (17)

It follows also from eq.(16) that the Dirac state Ψ(q) =
∫

dxΦ(x) is related
to the B-state as follows, Ψ(q) =

∫

dµdΠdΠΥ(q,−iµ, Π, Π).
6. The considered prescriptions for Φ, Ψ are valid for the general closed-

algebra case as well.
For the abelian algebra, it is possible [10] to take any B-state by trans-

formations (14) to the gauge

A−
a Υ ≡ 1√

2
[πa − iαb

aΛ̂b]Υ = 0. (18)

Combining relations (18) and (13), one finds [ ∂
∂Πa

+ αa
bΠ

b]Υ = 0, so that

Υ(q, λ, Π, Π) = exp[−Πaα
a
bΠ

b] exp[−λaαb
aΛ̂b]Φ(q) (19)

Calculating the integral (15), one finds (Υ, Υ) = (Φ,
∏M

a=1 2πδ(Λ̂a)Φ). Thus,
one should set Φ to be of the form (17), provided that gauge condition (18)
is satisfied.
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For the state Υ̃ = Υ + ΩX, with X = X00(q, λ) + Xa
01(q, λ)Πa +

X10,a(q, λ)Πa + ..., the function Φ̃(q) = Υ̃(q, 0, 0, 0) is related to Φ(q) as

Φ̃(q) = Φ(q) + Λ̂aX
a
01(q, 0). (20)

Therefore, Φ̃ and Φ are gauge-equivalent (eq.(4)), so that formula (17) is
valid for the states Υ + ΩX as well up to a gauge transformation.

The Dirac wave function is given by the relation

Ψ(q) =
∫

∏

a

dµadΠadΠaΥ(q,−iµ, Π, Π). (21)

For the states of the form (19), relation (5) is checked by the direct calcu-
lation. For states Υ = ΩX, the integrand in eq.(21) is a full derivative, so
that Ψ = 0 and gauge transformations do not influence on the Dirac wave
function.

7. For the closed-algebra case, one can use the Marnelius gauge [11]

CaΥ = 0, πaΥ = 0 (22)

Since the ghost number of Υ is zero, condition (22) means that

Υ = Φ(q) (23)

The inner product (15) has the form 0 · ∞. It is ill-defined and requires
renormalization then. This is the expression

(Υ, et[Ω,ρ]+Υ) (24)

which is formally equal to (Υ, Υ). The gauge fermion ρ is chosen to be
ρ = −λaΠa.

For states (23), the inner product is calculated as follows. One notices
[Ω, ρ]+ = −λaΛ̌a + i

2
λaf b

ab− iλaΠbC
cf b

ac−ΠaΠ
a and reproduces eq.(7) for the

abelian case. For the general case, one finds

(et[Ω,ρ]+Υ)(q, λ, Π, Π) = e−tλaΛ̂aΦ(q)eΠaBa
b(λ,t)Πb

with Λ̂a of the form (8) and B(λ, t) = − ∫ t
0 dτAd{exp(−τλaLa}. Formula (9)

is indeed reproduced for (Υ, Υ). We see that relation (17) is valid for the
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nonabelian case for the Marnelius gauge (22), since relation (20) is satisfied
for nonabelian groups. Formula (17) is checked for arbitrary gauge then.

It follows from eq.(5) that the Dirac wave function has the form (21)
for Υ = et[Ω;ρ]+Φ. Since for Υ = ΩX the integral (21) vanishes as a full
derivative, formula (21) is obtained for any gauge.

8. To find [7] a form of the operator η entering to the inner product (2) for
the nontrivial structure functions case, let us postulate the correspondence
(17). It is well-defined, since equivalent B-states give us equivalent Φ-states.

Then for the Marnelius gauge Υ = Φ(q) one has [Ω, ρ]+ = −ΠaΠ
a−λaΩ̂a

with

Ω̂a = Ωa(Π, C) = [Πa, Ω]+ = Λ̂a + ...+nΩnb1...bn−1

a1...an−1aΠb1 ...Πbn−1
Ca1 ...Can−1 + ...

and (Φ, et[Ω,ρ]+Φ) =
∫

dqΦ∗(q)
∏M

a=1 dµadΠadΠae−tΠaΠa+itµaΩ̂aΦ(q) with Ω̂a =
Ωa(Π, ∂/∂Π). Therefore,

η =
∫ M
∏

a=1

dµadΠadΠae−ΠaΠa+iµaΩ̂a(Π,∂/∂Π)1. (25)

By the direct calculations, one checks that η+ = η. Proof of property
η ≥ 0 is an open problem.

To justify property ηΛ̂a = 0, one writes

ηΛ̂bY
b(q) =

∫ M
∏

a=1

dµadΠadΠa exp[ΠaΠa + iµaΩ̂a]ΩΠbY
b(q). (26)

Making use of formula eΠaΠa+iµaΩ̂aΩ = Ω+eΠaΠa+iµaΩ̂a being a corollary of
the relation Ω+[Ω, ρ]+ = [Ω, ρ]+Ω, one notices that integral (26) vanishes as
a full derivative.

The Dirac wave function is of the form (21) for Υ = et[Ω;ρ]+Φ; equivalent
B-states give the same Dirac states according to eq.(21). Thus, eq.(21) is
valid for Υ ∼ Φ.

9. Let us consider the properties of quantum observables in different
quantization approaches.

In the BRST-BFV approach, observables are viewed as series

HB = H + ... + Hnb1...bn

a1...an
Πb1...Πbn

Ca1 ...Can + ... (27)
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The operator coefficient functions Hnb1...bn

a1...an
(p̂, q̂) are chosen in such a way

that
H+

B = HB, [Ω, HB] = 0. (28)

These properties provide that physical states (13) are taken by the operator
H to physical, while equivalent states are taken to equivalent; the inner
product is conserved under evolution.

One has: ΩHB = CcΛ̂cH + Λ̂bH
1b
a Ca + ...,, HBΩ = HCcΛ̂c + ..., where

... are terms with ghost momenta. Therefore, H should obey the property
[H; Λ̂a] = Λ̂bH

1b
a for some operators H1b

a .
Since (HBΥ)(q, 0, 0, 0) = HΥ(q, 0, 0, 0), it is the operator H that cor-

responds to the B-observable (27) in the refined algebraic quantization ap-
proach. An important feature of the physical observable is that the corre-
sponding evolution operator e−iHt should be unitary with respect to the inner
product (9). This means that (e−iHt)+ηe−iHt = η or

H+η = ηH. (29)

Check of property (29) is the following. One writes

(ηH −H+η)Φ(q) =
∫ M
∏

a=1

dµadΠadΠa(e[Ω;ρ]+HB −H+
B e[Ω;ρ]+)Φ(q).

Since H+
Be[Ω;ρ]+−e[Ω;ρ]+HB = [Ω;

∫ 1
0 dτeτ [Ω,ρ]+[HB; ρ]e(1−τ)[Ω,ρ]+ ]+, one justifies

eq.(29).
Let Φ be an auxiliary state corresponding to the Dirac state Ψ = ηΦ.

The observable H takes it to HΦ. This corresponds to the Dirac state

ηHΦ = H+ηΦ = H+Ψ.

Therefore, it is the operator H+ that corresponds to the observable H in the
Dirac approach, while exp(−iH+t) is an evolution operator.

10. There are some examples of explicit calculations of the inner product
(2) for the nontrivial structure functions case. Let q = (q1, q2, q3), Λ1 =
a(a2, a3)p1; Λ2 = p2. Classically, {Λ1; Λ2} = ∂2 log a(q2, q3)Λ1, so that the
structure functions are indeed nontrivial. Making use of the form of the
B-charge

Ω = −iπ1Π
1 − iπ2Π

2 + p̂1aC1 + (p̂2 − iΠ1∂2 log aC1 +
i

2
∂2 log a)C2,
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one finds [7] (Φ, ηΦ) =
∫

dx3|
∫

dx1dx2
Φ(x1,x2,x3)√

a(x2,x3)
|2, and Ψ(x1, x2, x3) =

1√
a(x2,x3)

∫

dy1dy2
Φ(y1,y2,x3)√

a(y2 ,x3)
. The Dirac wave function indeed satisfies the con-

ditions Λ̂+
1 Ψ = 0, Λ̂+

2 Ψ = 0.
11. Another group of examples is based on the semiclassical approxima-

tion (see [12] for details). Let Λ̂a depend on the small parameter h as

Λ̂a =
1

h
Λa(
√

hp̂,
√

hq̂) + Λ(1)
a (
√

hp̂,
√

hq̂) + ...

Consider the wave packet (Maslov complex-WKB [13]) states

Φ(q) = e
i

h
Se

i

h
P (q

√
h−Q)f(q − Q√

h
)

specified by classical variables X = (S ∈ R, P ∈ R
n, Q ∈ R

n) and quantum
function f ∈ S(Rn). It happens that (Φ, ηΦ) is not exponentially small only
if classical constraints vanish,

Λa(P, Q) = 0

Under this condition,

< Φ, Φ >' hM/2|c|2(f,
∏

a

2πδ(
∂Λa

∂Q
ξ +

∂Λa

∂P

1

i

∂

∂ξ
)f),

provided that action of the gauge group is nontrivial, without stationary
subgroups. The constraints are linearized in the semiclassical approximation
then.

One can also consider gauge transformations of the semiclassical states
of two types:

(a) ”small gauge transformations” without changing classical state : X 7→
X, f 7→ f + (∂Λa

∂Q
ξ + ∂Λa

∂P
1
i

∂
∂ξ

)χa;

(b) ”large gauge transformations”: Φ 7→ e−iτµaΛ̂aΦ; X 7→ λµτX, f 7→
Vµτ (λµτX ← X)f .

Semiclassical gauge transformations should be unitary (particularly, take
zero-norm states to zero-norm states) and satisfy the Batalin quasigroup
property [14]: classically, λµ1

λµ2
X = λµ3

X for some µ3 = µ3(µ1, µ2, X).
Semiclassically [12],

Vµ1
(λµ1

λµ2
X ← X)Vµ2

(λµ2
X ← X) = Vµ3

(λµ3
X ← X).
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One can also investigate semiclassical observables and evolution [12].
This work was supported by the Russian Foundation for Basic Research,
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