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1 Introduction

In quantum field theory the interaction is specified by a field potential U(¢).
Perturbation theory is based on a “perturbative vacuum” which in lowest
order is defined by the minimum, or one of the minima, of the tree level
potential and on Green functions of quantum fluctuations around this min-
imum. If there are several minima we have several sectors of the theory
which do not communicate within the perturbative framework. The form of
the potential outside the neighbourhood of the minima is not relevant for the
successful prediction of scattering cross sections and other experimentally ac-
cessible quantities. More generally, once one considers thermal or quantum
corrections, the basic properties of the system (including, e.g., phase transi-
tions) are determined by the effective potential, again the neighbourhoods of
the minima are relevant for perturbation theory.

Once one considers quantum field theory beyond the perturbation the-
ory, new phenomena emerge. A “false” vacuum based on a local, but not
global, minimum may decay into the true vacuum via bubble nucleation at
finite temperature, or by quantum tunneling via the bounce solutions; dif-
ferent gauge sectors of a theory may communicate via instantons. Here the
shape of the potential is relevant for determining the classical solutions, while
the effective potential, which includes quantum or thermal corrections, is re-
placed with the effective action. Another variety of phenomena emerges if
the quantum system has an explicit time dependence; such situations arise in
cosmology [1]. There a classical potential, the inflaton potential is assumed
to determine the inflationary stage of expansion; later the time dependence of
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the temperature leads to a time dependence of the effective potential. While
bubbles, bounces and instantons are local phenomena, here even a spatially
homogeneous field can move with time and, e.g., may connect different sec-
tors of the theory. Here the shape of the potential in a wide range of the
mean field ¢ becomes relevant.

A type of potentials that has been wideley considered, are potentials with
spontaneous symmetry breaking [2]. In particular they are relevant for the
Higgs phenomenon, which is at the basis of the electroweak standard model,
and which may be relevant to its GUT extensions. Prototypes are the double
well and the Mexican hat potentials. Such potentials have regions of negative
curvature where the squared mass of the physical Higgs boson becomes neg-
ative, and likewise regions where the squared mass of the Goldstone bosons
becomes negative. The negative squared masses of the fundamental excita-
tions signal an instability of the theory. So one cannot sustain a spatially
homogeneous classical or mean field in regions where some mass becomes
imaginary, instability implies the field becoming time-dependent. Therefore,
if one wants to explore the meaning of the potential in the unstable regions
one has to leave the realm of equilibrium quantum field theory and one is
lead to consider quantum field theory out of equilibrium. This has been done
by several groups, mainly within the last decade.

The theoretical framework for the real-time simulations of nonequilibrium
quantum field theory is the Schwinger-Keldysh formalism [3], also referred to
as closed-time-path (CTP) or real time formalism. The second ingredient for
simulations is some approximation to the underlying quantum field theory.
Approximations which include quantum back-reaction via resummation have
been based on the on the Cornwall-Jackiw-Tomboulis (CJT or 2PI) formalism
[4], as adapted to nonequilibrium quantum field theory by Calzetta and Hu
[5]. Alternatively one may use the 2PPI formalism of Verschelde and Coppens
[6]. Both formalisms are ®-derivable and can be renormalized consistently.
Within the CTP formalism it is mainly the large-N limit that has been
investigated [7, 8, 9, 10], higher approximations as next-to-leading order large
N (NLOLN)[11] or the bare vertex approximation [12] have been considered
recently. The 2PPI formalism contains in leading order of a loop expansion
the Hartree approximation as presented here [13]. The two-loop extension of
this expansion has been studied recently [14].

In the following we will mainly refer to a picture of an O(N) sigma model,
where instead of the Higgs particle we have the sigma field, and with the
pions as the Goldstone bosons. We will at first define the model and the



nonequilibrium equations of motion in the Hartree approximation, then we
will present the numerical results of such simulations and finally draw some
conclusions. A more extensive presentation of our work is found in Ref. [13].

2 The O(N) vector model

The O(N) vector model with spontaneous symmetry breaking is defined by
the Lagrange density
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We consider a quantum system out of equilibrium that is characterized by a
spatially homogenous background field. The fields are separated as

¢, = gba(t) + na(Xv t) (2)

into a classical part ¢, = (®,) and a fluctuation part n, with (n,) = 0.
Furthermore, in view of spatial translation invariance it is convenient to
decompose the quantum fluctuations via
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where wy; = \/k? +md,. mg; will be defined below. The subscript i = 1
denotes the sigma mode (a = 1), i = 2 denotes the pion modes (a = 2...N).
In formulating the equations of motion and the renormalization we follow
the presentation of Nemoto et al. [15] whose generalization to nonequilibri-
ums system [13] is straightforward.
We introduce the inverse propagator in the classical background field in
an O(N) symmetric form
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Here M, 5 are trial masses that will be determined self-consistently. In con-
trast to equilibrium quantum field theory these masses, as well as the classical
field, are allowed to depend on time. The physical propagator will of course
not be of this form. Indeed if one uses the CJT formalism in higher orders



in the loop or the 1/N expansions, the propagator will have to be computed
using a Schwinger-Dyson equation. The simple form of the propagator is pre-
served in higher orders in another resummation scheme, the 2PPI formalism
[6].

If the inverse propagator has the restricted form characterized by just
variational masses, the propagators themselves can be written in factorized
form in terms of the mode functions f;(k,t). Then the Fock space defined by
these mode functions and the associated Bogoliubov coefficients can be used
to formulate a particle interpretation that has been widely used in cosmol-
ogy or for particle creation in external fields. However, one has to be aware
of the fact that these “particle excitations” are artefacts of the variational
approximation and that their relation to physical particles has to be consid-
ered with care. So instead of particle numbers one should better consider the
energy-momentum tensor or currents whose formulation does not depend on
the particle picture. Keeping this in mind we may, superficially, associate
M with the sigma mass and My with the pion mass. The fluctuations par-
allel to the vector q; are the sigma fluctuations, the orthogonal ones are the
pions.

In our application we choose the classical field to have just one nonva-
nishing component ¢; = ¢; then the inverse propagator has only diagonal
elements and these read
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(no summation over 7).
In the Hartree approximation the equations of motion for the classical
field and for the quantum fluctuations are given by

o(t) + Ma(t)e(t) = 0, (6)
Filk,t) + [+ ME(D)] filk,t) = 0. (7)
The masses M; and M, satisfy, for all ¢, the gap equations
M3(t) = X[3¢%(t) — v* + 3F1(t) + (N — 1) Fa(t)] (8)
M3(t) = A[@*(t) = v+ Fu(t) + (N + 1) Fo(t)] (9)

and the “mass of the classical field” is given by

MG(t) = Mi(t) — 2X6°(1) . (10)
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The quantities F;(t) are the fluctuation integrals

F) = [ 0P (11)

The gap equations incorporate the resummation of bubble diagrams. The
equations of motion and the gap equations contain divergent integrals and
need to be replaced by renormalized ones. We have used the approach of
Ref. [16], and we will assume that we work with the renormalized equations.

For a time-dependent problem we have to specify initial conditions. We
choose at t = 0 a value of the classical field ¢pg = ¢(0) different from its value
in the equilibrium ground state, which is given by v apart from quantum cor-
rections. The initial mass parameters m;y = M;(0) are obtained by solving
the gap equations (8) and (9) at ¢t = 0, i.e., by finding the extremum of the
effective potential at a fixed value of ¢ = ¢y. So the initial configuration is an
equilibrium configuration with an externally fixed field ¢y. When the field is
allowed, for ¢ > 0, to become an internal dynamical field the nonequilibrium
evolution sets in.

3 Numerical simulations

We will show here results for the “typical” case of N = 4 with a coupling
A = 1. We start the classical field at values ¢g > v, as for ¢g < v the
gap equations have no real solution. The region ¢ < v is only explored
dynamically.

For the tree level potential the value ¢ = v/2v is the value for which the
energy is equal to the top of the Mexican hat potential. So we expect the
transition from spontaneously broken symmetry and restoration of symmetry
for an initial value ¢y = v/2v.

An example for the evolution of the classical or mean field ¢(¢) is presented
in Fig. 1. It is not typical, but it nicely illustrates the behavior very close to
the phase transition, making apparent the coexistence of a broken symmetry
and a symmetric minimum.

3.1 Stabilization

In the nonequilibrium evolution of models with spontaneous symmetry break-
ing both squared masses ./\/li2 can in general take negative values. In large-N
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Figure 1: Time evolution of the classical field ¢ for ¢y ~ \/2v (critical region).
Parameters as above but ¢g = 1.445v.

dynamics it is well known [7, 8, 9, 10] that in this situation the fluctations
increase exponentially and drive the squared masses back to positive values.
This stabilizes the system dynamically and prevents the unphysical behavior
of the one-loop approximation where an exponentially increasing amount of
quantum energy, taken from the vacuum, is converted into classical one.

Our first essential observation is that this stabilization takes place as well
at finite N in the Hartree approximation. The typical time evolution of the
classical field and of the squared masses M%Z is displayed in Fig. 2, based on
the parameters N = 4, A = 1, and ¢y = 1.4v. Both squared masses are seen
to become negative at early times and to reach positive values at late times.
The time where stabilization sets in is characterized by a strong increase of
the quantum fluctuations.
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Figure 2: Time evolution of the masses /\/@72. Parameters are N = 4, \ = 1,
and ¢y = 1.4v. The upper curve is M2

3.2 Late time behavior of the classical field

The value ¢, of the classical field, averaged at late times, is a function of the
initial value ¢, and therefore of the total energy. As ¢, is the value where
the fields “settles” ultimately, it can be considered as an order parameter
analogous to the vacuum expectation value v(7) of finite temperature field
theory. In the analysis of the broken symmetry phase in the large- N limit it
was observed [9, 10] that ¢., has a specific dependence on the initial value
®o, given at zero temperature by

boo = [03 (20° — 7)) " (12)

This is qualitatively the dependence one expects for the analogous function
v(T) in the case of a second order phase transition, with ¢q replaced by
T and v by Ty. The function ¢o.(¢g), as determined numerically in our
simulations, is displayed in Fig. 3. The shape is similar to the one found in
the large-N case. It is somewhat difficult to analyze the behavior near the
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Figure 3: The order parameter ¢ (o) for N =4 and A = 1.

phase transition; for a second order transition the slope is infinite there, while
for a first order transition one expects a discontinuity. Closer investigation
gives evidence for the latter case. So the phase transition is (weakly) first
order. The same is found, in this model and in the Hartree approximation,
by analyzing v(T") in thermal equilibrium. The same analogy between out-
of-equilibrium and finite temperature quantum field theory holds in the limit
N — oo where a second order phase transition is found in both cases [2, 9, 10].

3.3 Late time behavior of the masses

Another set of variables characteristic for the phase structure of the O(V)
model in equilibrium are the mass scales or correlation lengths. In the broken
symmetry phase we expect a vanishing pion mass and a nonzero value of the
sigma mass. At a second order phase transition the sigma mass should go
to zero, while for a first order transition it stays finite. Above the phase
transition both masses should be equal.

The behavior of the various mass parameters is shown in Fig. 3. The
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Figure 4. The various masses averaged at late times (t=300), as functions of
the initial amplitude. Squares: M?, diamonds: M3, circles: M?. Parameters
are N =4 and \ = 1.

“pion” mass My does not vanish below the transition, but is small. There
are arguments [15, 13] that the Goldstone mass should be rather identified
with the mass of the classical field M .ss Which indeed displays the expected
behavior. The sigma mass drops near the phase transition but does not
quite reach zero. This is in agreement with the assignment of a weakly first
order phase transition. The fact that the masses do not become equal in the
symmetric phase for ¢g > vv/2 can be understood from the fact that the
classical field continues to oscillate at late times, and so keeps in memory the
explicit symmetry breaking due to the non-symmetric initial state.

3.4 Parametric resonance

In the large-N limit one of the most pronounced characteristic of the mo-
mentum spectra of the “pion” fluctuations is the occurrence of parametric
resonance bands. These develop already in the early stage of evolution, be-



fore back-reaction sets in. Then the time dependence of the classical field is
described by Jacobian elliptic functions, and the fluctuations are solutions of
the Lamé equation. These solutions have been derived and discussed exten-
sively in [7, 9].

Parametric resonance bands occur in the Hartree approximation as well,
both in the broken and symmetric phases. We show a typical momentum
spectrum in Fig. 5. What is shown there is the UV subtracted integrand
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Figure 5. Spectrum of pion fluctuations in the broken symmetry phase. The
integrand of the fluctuation integral as a function of k£ for A = 1, ¢g = 1.2v at
t = 100.

of the fluctuation integral. While parametric resonance is welcome for an
efficient transfer of classical into quantum energy, the presence of the reso-
nance structure even at late times manifests the lack of thermalisation that
is inherent in the approximation.

4 Conclusions

We have presented here an analysis of nonequilibrium dynamics in O(V)
models with spontaneous symmetry breaking at finite N in the Hartree ap-
proximation. We summarize our findings as follows:
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(i) The back-reaction of the quantum fluctuations onto themselves leads,
as in the large-N approximation, to a stabilization of the system, thus
avoiding the catastrophic instability found in the one-loop approxima-
tion.

(ii)) The dependence on the initial conditions displays an expected phase
transition between a regime with spontaneous symmetry breaking and
a symmetric phase.

(iii) The features of this phase transition are analogous to those found in
quantum field theory at finite temperature, in the same approximation.
The phase transition is weakly first order, while it is second order in
the large- N limit.

(iv) The system does not thermalize in this approximation. Thermalization
has been found to occur in higher approximations. These include the
sunset and higher order diagrams, incorporating direct rescattering of
the quantum fluctuations.
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