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1 Introduction

There is considerable theoretical interest in the decays B → K∗γ and B → ργ
as these processes are under intensive experimental investigations at CLEO,
and lately at the B-factories at KEK and SLAC.

The present measurements of the branching ratios of B → K∗γ decays
from the CLEO [1], BABAR [2], and BELLE [3] collaborations yield the
following charge-conjugated world averages [4]:

Bexp(B
± → K∗±γ) = (3.8 ± 0.5) × 10−5, (1)

Bexp(B
0 → K∗0γ) = (4.3 ± 0.4) × 10−5.

The Cabibbo-Kobayashi-Maskawa (CKM) disfavored B → ργ decays
have not yet been observed. The current best limits are from the BABAR
collaboration. One has (at 90% C.L.) [5]:

Bexp(B
± → ρ±γ) < 2.3 × 10−6, (2)

Bexp(B
0 → ρ0γ) < 1.4 × 10−6.

Combined using the isospin symmetry, they yield an improved upper limit
on the ratio of the branching ratios [5]:

Rexp(ργ/K∗γ) =
Bexp(B → ργ)

Bexp(B → K∗γ)
< 0.05. (3)

Measurement of this ratio will provide an independent determination of the
CKM matrix element ratio |Vtd/Vts|. It has been argued in the literature
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that a combination of the Heavy Quark Effective Theory and the Large
Energy Effective Theory (HQET/LEET) provides a sound theoretical basis
to calculate the branching ratios.

In this paper, predictions for the branching ratios of the B → ργ decays
are reviewed which have been calculated in the HQET/LEET framework.
The uncertainty connected with the theoretical input (in particular, form
factors) is considerably reduced in the ratio of the branching ratios:

Rth(ργ/K∗γ) =
Bth(B → ργ)

Bth(B → K∗γ)
. (4)

Experimental values of the B → K∗γ branching ratios in combination with
the theoretical estimate of the ratio above allow to obtain predictions for the
B → ργ decays with reduced uncertainty. The isospin-violating ratio and
the direct CP-asymmetry in the decays B → ργ are also briefly discussed.
More details one can find in Ref. [6].

2 B → ργ decay width in NLO

The effective Hamiltonian for the B → ργ decay (equivalently b → dγ pro-
cess) at the scale µ = O(mb), where mb is the b-quark mass, is as follows:

Heff =
GF√

2

{

VubV
∗
ud

[

C1(µ)O(u)
1 (µ) + C2(µ)O(u)

2 (µ)
]

+ VcbV
∗
cd

[

C1(µ)O(c)
1 (µ) + C2(µ)O(c)

2 (µ)
]

(5)

− VtbV
∗
td

[

Ceff
7 (µ)O7(µ) + Ceff

8 (µ)O8(µ)
]

+ . . .
}

,

where the set of operators is (q = u, c):

O(q)
1 = (d̄αγµ(1 − γ5)qβ) (q̄βγµ(1 − γ5)bα), (6)

O(q)
2 = (d̄αγµ(1 − γ5)qα) (q̄βγµ(1 − γ5)bβ), (7)

O7 =
emb

8π2
(d̄ασµν(1 + γ5)bα) Fµν, (8)

O8 =
gsmb

8π2
(d̄ασµν(1 + γ5)T

A
αβbβ) GA

µν . (9)

The strong and electroweak four-quark penguin operators are assumed to
be present in the effective Hamiltonian (5) and denoted by ellipses there.
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They are not taken into account due to the small values of the corresponding
Wilson coefficients.

The effective Hamiltonian (5) sandwiched between the B- and ρ-meson
states can be expressed in terms of matrix elements of bilinear quark currents
defining a heavy-light transition. These matrix elements are dominated by
strong interactions at small momentum transfer and cannot be calculated
perturbatively. The general decomposition of the matrix elements on all
possible Lorentz structures admits seven scalar functions (form factors): V (ρ),

A
(ρ)
i (i = 0, 1, 2), and T

(ρ)
i (i = 1, 2, 3) of the momentum squared q2 =

(pB − pρ)
2 transferred from the heavy meson to the light one [7]:

〈

ρ(pρ, ε
∗)|d̄ γµb|B̄(pB)

〉

=
2i V (ρ)(q2)

mB + mρ

eps(µ, ε∗, pρ, pB), (10)

〈

ρ(pρ, ε
∗)|d̄ γµγ5qνb|B̄(pB)

〉

= 2mρ A
(ρ)
0 (q2)

(ε∗q)

q2
qµ (11)

+A
(ρ)
1 (q2) (mB + mρ)

[

ε∗µ − (ε∗q)

q2
qµ

]

−A
(ρ)
2 (q2)

(ε∗q)

mB + mρ

[

(pB + pρ)
µ −

(m2
B − m2

ρ)

q2
qµ

]

,

〈

ρ(pρ, ε
∗)|d̄ σµνqνb|B̄(pB)

〉

= 2 T
(ρ)
1 (q2) eps(µ, ε∗, pρ, pB), (12)

〈

ρ(pρ, ε
∗)|d̄ σµνγ5qνb|B̄(pB)

〉

= (13)

−i T
(ρ)
2 (q2) [(m2

B − m2
ρ) ε∗µ − (ε∗q) (pB + pρ)

µ]

−i T
(ρ)
3 (q2) (ε∗q)

[

qµ − q2

m2
B − m2

ρ

(pB + pρ)
µ

]

,

where eps(µ, ε∗, pρ, pB) = εµναβε∗νpραpBβ. The heavy quark symmetry and
the behavior of the final meson in the large energy limit (the large recoil
limit) allow to reduce the number of independent form factors to two only:

ξ
(ρ)
⊥ (q2) and ξ

(ρ)
‖ (q2). The B → ργ decay amplitude is proportional to one of

them – ξ
(ρ)
⊥ (q2), which is related to the form factors introduced above for the

case q2 = 0 as follows (terms of order m2
ρ/m

2
B are neglected):

mB

mB + mρ

V (ρ)(0) =
mB + mρ

mB

A
(ρ)
1 (0) = T

(ρ)
1 (0) = T

(ρ)
2 (0) = ξ

(ρ)
⊥ (0). (14)

These relations among the form factors in the symmetry limit are broken by
perturbative QCD radiative corrections arising from the vertex renormaliza-
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tion and the hard spectator interactions. To incorporate both types of QCD
corrections, a tentative factorization formula for the heavy-light form factors
at large recoil and at leading order in the inverse heavy meson mass was
introduced [7]:

F
(ρ)
k = C⊥kξ

(ρ)
⊥ + ΦB ⊗ Tk ⊗ Φρ, (15)

where F
(ρ)
k is any of the four form factors in the B → ρ transitions related

by Eq. (14), C⊥k = C
(0)
⊥k [1 + O(αs)] are the renormalization coefficients, Tk

is a hard-scattering kernel calculated in O(αs), ΦB and Φρ are the light-
cone distribution amplitudes of the B- and ρ-mesons convoluted with the
kernel Tk.

In the leading order the electromagnetic penguin operator O7 contributes
in the B → ργ decay amplitude at the tree level. Taking into account the
definitions of the B → ρ transition form factors in the tensor (12) and the

axial-tensor (13) currents and the symmetry relation T
(ρ)
1 (0) = T

(ρ)
2 (0), the

amplitude has the form:

M (0) = −GF√
2

VtbV
∗
td

em̄b(µ)

4π2
C

(0)eff
7 (µ) T

(ρ)
1 (0) (16)

× [(Pq)(e∗ε∗) − (e∗P )(ε∗q) + i eps(e∗, ε∗, P, q)] ,

where q = pB − pρ and e∗ are the photon four-momentum and polarization
vector, respectively, and P = pB + pρ.

The branching ratio can be easily obtained and results in the form:

BLO
th (B → ργ) = τB

G2
F α|VtbV

∗
td|2m3

B

32π4

[

1 −
m2

ρ

m2
B

]3

m̄2
b(µ) |C(0)eff

7 (µ)|2 |T (ρ)
1 (0)|2.

(17)

It is natural to assume the µ-dependence of the form factor, T
(ρ)
1 (0, µ), for

compensating the dependence on the scale µ originated by the b-quark mass,
m̄b(µ), and the Wilson coefficient, C

(0)eff
7 (µ), in the branching ratio.

The branching ratio of the B → K∗γ decays can be easily obtained from
Eq. (17) by replacing: Vtd → Vts, mρ → mK∗, and T

(ρ)
1 (0) → T

(K∗)
1 (0), which

yield the ratio of branching ratios (4) as:

R
(0)
th (ργ/K∗γ) = Sρ

∣

∣

∣

∣

Vtd

Vts

∣

∣

∣

∣

2 [ m2
B − m2

ρ

m2
B − m2

K∗

]3
∣

∣

∣

∣

∣

T
(ρ)
1 (0, µ)

T
(K∗)
1 (0, µ)

∣

∣

∣

∣

∣

2

, (18)

where Sρ = 1 for the charged ρ-meson and Sρ = 1/2 for the neutral one.
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There is also contribution from the annihilation diagrams to the B → ργ
decay width. This additional contribution modifies the equation above as
follows:

Rth(ργ/K∗γ) = R
(0)
th (ργ/K∗γ) [1 + ∆R(ρ/K∗)] . (19)

The radiation from quarks inside such a meson is compensated by the dia-
gram with the photon emitted from the vertex (for a recent review of this
topic see Ref. [8]). Only one annihilation diagram with the photon emitted
from the spectator quark in the B-meson is numerically important and its
strength can be parameterized by the dimensionless factor εA:

∆R(ρ/K∗) = λu εA, (20)

λu =
VubV

∗
ud

VtbV ∗
td

= −
∣

∣

∣

∣

VubV
∗
ud

VtbV ∗
td

∣

∣

∣

∣

eiα = F1 + iF2, (21)

where α is one of the angle from the unitarity triangle. In the neutral B-
meson decays the parameter εA is numerically small and can be neglected
at the accuracy accepted. For the charged B-meson decays the LCSR value
εA = 0.3 ± 0.1 [9] is used in the analysis.

There is also QCD corrections [of order O(αs)] which are called further
as the next-to-leading order (NLO) ones. The total NLO correction to the
B → ργ decay width consists of:

• b-quark mass m̄b(µ). In the modified minimal subtraction scheme at
the renormalization scale µ it can be connected with the b-quark pole mass,
mb,pole, by the relation:

m̄b(µ) = mb,pole

[

1 +
αs(µ)

4π
CF

(

3 ln
m2

b,pole

µ2
− 4

)]

. (22)

• Wilson coefficient Ceff
7 (µ).

Ceff
7 (µ) = C

(0)eff
7 (µ) +

αs(µ)

4π
C

(1)eff
7 (µ). (23)

The explicit expressions for the Wilson coefficient can be found in Ref. [10].
• The factorizable NLO corrections to the form factors. These corrections

are described by the diagrams with the O7-operator (8). They can be divided
into the vertex and hard-spectator corrections [7]:

T
(ρ)
1 (0, µ) = ξ

(ρ)
⊥ (0)

[

1 +
αs(µ)

4π
CF

(

ln
m2

b,pole

µ2
− 1

)

+
αs(µsp)

4π
CF

∆F⊥(µsp)

2ξ
(ρ)
⊥ (0)

]

,

(24)
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where ξ
(ρ)
⊥ (0) is the value of the T

(ρ)
1 (0) form factor in the HQET/LEET limit,

µsp =
√

µΛH (ΛH ' 0.5 GeV) is the typical scale of the gluon virtuality in

the hard-spectator corrections, and ∆F
(ρ)
⊥ is the dimensionless quantity which

defines the strength of the hard-spectator corrections:

∆F
(ρ)
⊥ (µsp) =

8π2fBf
(ρ)
⊥ (µsp)

3mBλB,+
< ū−1 >

(ρ)
⊥ (µsp) ' 1.64. (25)

The estimation was done on the scale of the spectator corrections µsp =
1.52 GeV [6].

• The nonfactorizable NLO corrections. They are also of two types: the
vertex and the hard-spectator corrections. The nonfactorizable vertex correc-
tions can be taken from inclusive B → Xdγ decay [11]. The nonfactorizable
hard-spectator ones were recently calculated by several groups [6, 12, 13].

The total contribution to the form factor originated by the hard-spectator
corrections is [6]:

∆spT
(ρ)
1 (0, µ) ' αs(µ)

4π
CF

∆F
(ρ)
⊥ (µ)

2

[

1 +
C

(0)eff
8 (µ)

3C
(0)eff
7 (µ)

(26)

+
C

(0)
2 (µ)

3C
(0)eff
7 (µ)

(

1 +
V ∗

cdVcb

V ∗
tdVtb

h(ρ)(z, µ)

〈ū−1〉(ρ)
⊥ (µ)

)]

,

where h(ρ)(z, µ) is the complex function of the quark mass ratio z = m2
c/m

2
b

originated by the c-quark loop which analytic expression can be found in
Ref. [6].

The NLO corrections discussed above modify the B → ργ branching
ratio and the result for the charged-conjugate averaged branching ratio can
be written in the form:

B̄th(B
± → ρ±γ) = τB+

G2
Fα|VtbV

∗
td|2

32π4
m2

b,pole m3
B

[

1 −
m2

ρ

m2
B

]3
[

ξ
(ρ)
⊥ (0)

]2

(27)

×
{

(C
(0)eff
7 + A

(1)t
R )2 + (F 2

1 + F 2
2 ) (Au

R + Lu
R)2 + 2F1 [C

(0)eff
7 (Au

R + Lu
R) + A

(1)t
R Lu

R]
}

,

where Lu
R = εA C

(0)eff
7 . The NLO amplitude A(1)t(µ) of the decay presented

here can be decomposed in three contributing parts [6]:

A(1)t(µ) = A
(1)
C7

(µ) + A(1)
ver(µ) + A(1)ρ

sp (µsp), (28)
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where the correction due to the b-quark mass is included in the A
(1)
ver(µ) part.

The amplitude A(1)K∗

(µ) for the B → K∗γ decay can be written in a similar

form and differs from A(1)t by the hard-spectator part A
(1)K∗

sp (µ) only [6]. Note
that the u-quark contribution Au(µ) from the penguin diagrams, which also
involves the contribution of hard-spectator corrections, can not be ignored
in the B → ργ decay.

Using the presentation (27) of the branching ratio, the dynamical func-
tion ∆R(ρ/K∗), defined by Eq. (19), in the NLO and with the annihilation
contribution taken into account can be written:

∆R(ρ/K∗) =
[

2εA F1 + ε2
A(F 2

1 + F 2
2 )
]

(

1 − 2A(1)K∗

C
(0)eff
7

)

− 2A(1)K∗

C
(0)eff
7

(29)

+
2

C
(0)eff
7

Re
[

A(1)ρ
sp − A(1)K∗

sp + F1(A
u + εAA(1)t) + εA(F 2

1 + F 2
2 )Au

]

.

3 Phenomenology of B → ργ Decays

B → ργ Branching Ratios. For numerical predictions of the B → ργ
branching ratios it is better to use ratio of the B → ργ and B → K∗γ decay
widths (4) and then connect it with the experimentally measured values of
B → K∗γ branching ratios (1).

To do this, let us start with the discussion of form factors. SUF (3)-

breaking effects in the QCD form factors T
(K∗)
1 (0) and T

(ρ)
1 (0) have been

evaluated within the QCD sum-rules [9]. These can be taken to hold also for

the ratio of the HQET form factors. Thus, we take ζ = ξ
(ρ)
⊥ (0)/ξ

(K∗)
⊥ (0) '

0.76 ± 0.06. As it was pointed out in Ref. [14], the error here is not on ζ by
itself, but rather on the deviation of ζ from its SUF (3)-symmetry limit, i. e.
1 − ζ.

The main uncertainties in the dynamical functions ∆R(ρ/K∗) come from
the uncertainties in the CKM angle α and the nonperturbative parame-
ters ξ

(ρ)
⊥ (0) and ξ

(K∗)
⊥ (0). Taking into account various parametric uncertain-

ties, it is found that the dynamical functions ∆R(ρ/K∗) are constrained in
the range [6]:

∣

∣∆R(ρ±/K∗±)
∣

∣ ≤ 0.25,
∣

∣∆R(ρ0/K∗0)
∣

∣ ≤ 0.13, (30)

with the central values ∆R(ρ±/K∗±) ' ∆R(ρ0/K∗0) ' 0. This quantifies
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the statement that the ratio Rth(ργ/K∗γ) is stable against O(αs) and 1/mB-
corrections.

Taking into account the ratio of the CKM matrix elements: |Vtd/Vts| =
0.194 ± 0.029, the branching ratios can be estimated as [6]

B̄th(B
± → ρ±γ) = (0.90 ± 0.33[th] ± 0.10[exp]) × 10−6,

B̄th(B
0 → ρ0γ) = (0.49 ± 0.18[th] ± 0.04[exp]) × 10−6,

where the SM favoured range 77◦ ≤ α ≤ 113◦ was used. In the above esti-
mates, the first error is due to the uncertainties of the theory and the second
is from the experimental data on the B → K∗γ branching ratios. The recent
experimental upper limits on these decays by the BABAR collaboration (2)
are approximately a factor three above the predicted ones. We expect that
the BABAR and BELLE experiments will soon reach the SM sensitivity in
these decays.

Isospin-Violating Ratios. The numerical analysis is presented for the
charge-conjugate averaged of the isospin-violating ratios in the B → ργ de-
cays:

∆ =
1

4

[

Γ(B− → ρ−γ)

Γ(B̄0 → ρ0γ)
+

Γ(B+ → ρ+γ)

Γ(B0 → ρ0γ)

]

− 1. (31)

The dependence on the unitarity triangle angle α is presented in Fig. 1. The
charge-conjugate average ∆ for the B → ργ decays is found to be likewise
stable against the NLO and 1/mB-corrections [6]. In the expected range of
the CKM parameters, this quantity is inside the interval |∆| ≤ 10%.

Direct CP-Asymmetry. The direct CP-asymmetry in the B± → ρ±γ
decay rates is defined as follows:

ACP(ρ±γ) =
B(B− → ρ−γ) − B(B+ → ρ+γ)

B(B− → ρ−γ) + B(B+ → ρ+γ)
. (32)

The CP-asymmetry ACP(ρ±γ) receives contributions from the hard-spectator
corrections which tend to decrease its value estimated from the vertex cor-
rections alone. The dependencies of the CP-asymmetry on the angle α and
on the quark mass ratio

√
z = mc/mb are presented in Fig. 2. The Standard

Model estimates show that the direct CP-asymmetry is definitely positive
and for 0.2 .

√
z . 0.3 is inside the interval: 5% < ACP(ρ±γ) < 15%.
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Figure 1: The charge-conjugate averaged ratio ∆ for B → ργ decays as a
function of the unitarity triangle angle α in the leading order (dotted curve),
next-to-leading order without (dashed curve) and with (solid curve) hard-
spectator corrections. The ±1σ allowed band of α from the SM unitarity fits
is also indicated.
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