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1 Introduction

In this conference two recent determinations of the unitarity triangle angle β

have been presented[1]. BaBar finds sin(2β) = 0.75±0.09±0.04, while Belle
measures sin(2β) = 0.82 ± 0.12 ± 0.05. The first error is statistical and it is
rapidly decreasing, while the second one is systematical and it will eventually
limit the experimental determination of this fundamental quantity. It is
hoped that after 2007, LHCb[2] will be able to reduce the overall uncertainty
to less than 1% .

Given this state of affairs, it is clear that in a not too distant future a day
will come when our experimental colleagues, when reporting on their high
precision measurement of the Kobayashi-Maskawa matrix elements, will have
to tell us in which renormalization scheme the corresponding mixing angles
and CP violating phase(s) have been measured, exactly as they do so when
reporting on the measured value of αs.

It is essential to have the renormalization mechanism well under control
to be able to separate the radiative corrections due to electroweak physics
from those due to new physics. Most likely the latter —if they exist at all—
are of the same size or even smaller than the former, exactly as a similar
analysis in the neutral current sector has shown in recent years. Effective
lagrangian techniques are important in this context[3].

In the neutral sector it is already totally mandatory to include electroweak
radiative corrections to bring theory and experiment into agreement. Tree
level results are incompatible with experiment by many standard deviations
[4]. In a few years electroweak radiative corrections will be required in the
studies analysing the “unitarity” of the CKM matrix too 1. Corrections are
of several types. With an on-shell[5] scheme in mind, we need counter terms
for the electric charge, Weinberg angle and wave-function renormalization
(wfr.) for the W gauge boson. We shall also require wfr. for the external
fermions and counter terms for the entries of the CKM matrix. These are in
fact related in a way that will be described below [6]. Finally one needs to
compute the 1PI vertex parts of the different processes.

Several proposals have been put forward in the literature to define ap-
propriate counter terms both for the external legs and for the CKM matrix
elements. The original prescription for wfr. diagonalizing the on-shell prop-

1The CKM matrix is certainly unitary, but the physical observables that at tree level
coincide with these matrix elements certainly do not necessarily fulfil a unitarity constraint
once quantum corrections are switched on.See e.g. [3] for a discussion on this point
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agator was introduced in [7]. In [8] the wfr. “satisfying” the conditions of
[7] were derived. However since [8] does not take care about the branch cuts
present in the self-energies those results must be considered only consistent
up to absorptive terms. Later it was realized [9] that the on-shell condi-
tions defined in [7] where inconsistent and in fact impossible to satisfy for a
minimal set of renormalization constants due to the imaginary branch cuts
present in the self-energies. The author of [9] circumvented this problem by
introducing a prescription that de facto eliminates such branch cuts, but at
the price of not diagonalizing the propagators in flavour space.

As we shall see later, some Ward identities based on the SU(2)L gauge
symmetry relate wfr. and counter terms for the CKM matrix elements [6]. So
two of the necessary ingredients to renormalize the charged current vertices
are actually related. In [10] it was seen that if the prescription of [8] was used
in the counter terms for the CKM matrix elements, the results were in viola-
tion of gauge invariance. An additional condition for the gauge invariance of
the physical amplitudes is that counter terms for the CKM matrix elements
Kij are by themselves gauge independent. This condition is fulfilled by the
CKM counter term proposed in [10] as it is in minimal subtraction [6], [11].

Other proposals to handle charged vertex renormalization exist in the
literature [11]. In all these works either the external wfr. proposed originally
in [8, 9] are used, or the issue is sidestepped altogether. In either case the
absorptive part of the self-energies are not taken into account. As we shall
see doing so leads to S -matrix elements which are gauge dependent, and
this irrespective of the method one uses to renormalize Kij provided the
redefinition of Kij is gauge independent and preserves unitarity.

A more detailed account of this work is presented in [12]

2 W+ and top decay

We shall consider W + (q) → fi (p1) f̄j (p2) and fi (p1) → W+ (q) fj (p2). Latin
indices correspond to families. For the first process there are at the one-loop
level two different type of Lorentz structures that appear

M
(1)
L = ūi (p1) 6 ε (q)Lvj (p2) , (L ↔ R) ,

M
(2)
L = ūi (p1)Lvj (p2) p1 · ε (q) , (L ↔ R) . (2.1)

3



and for the second one

M
(1)
L = ūj (p2) 6 ε

∗ (q)Lui (p1) , (L ↔ R) ,

M
(2)
L = ūj (p2) Lui (p1) p1 · ε

∗ (q) , (L ↔ R) . (2.2)

At tree level

M0 = −
eKij

2sW

M
(1)
L , (2.3)

where Eq. (2.1) is used for M
(1)
L in W+ decay and Eq. (2.2) instead for M

(1)
L

in t decay. The one-loop corrected transition amplitude can be written as

M1 = −
e

2sW

M
(1)
L

[

Kij

(

1 +
δe

e
−

δsW

sW

+
1

2
δZW

)

+
1

2

(

δZ̄Lu
ir Krj + KirδZ

Ld
rj

)

+δKij] −
e

2sW

(

δF
(1)
L M

(1)
L + M

(2)
L δF

(2)
L + M

(1)
R δF

(1)
R + M

(2)
R δF

(2)
R

)

. (2.4)

In this expression δF
(1,2)
L,R are the electroweak form factors from one-loop

vertex diagrams. The renormalization constants for e, sW and the wfr. of
the gauge boson can be found in [5]. δKij and the fermion wfr. will be
discussed next.

3 The Role of Ward Identities

There is a SU(2) Ward identity [10] that relates the CKM counterterms and
wfr. constants. Let us see how the argument goes. In the weak basis,
doublets renormalize with a common wfr. constant

(

u0

d0

)

L

= ZL 1

2

(

u

d

)

L

. (3.1)

On the other hand, in the mass diagonal basis there is no reason for up-type
and down-type quarks to renormalize in the same way

(

ũ0

d̃0

)

L

=

(

ZuL 1

2 u

ZdL 1

2 d

)

L

. (3.2)

The passage from one basis to the other is accomplished with the help of
unitary matrices V 0 and V for the up-type and down-type quarks, namely

ũ = V †
u u ũ0 = V 0†

u u0, d̃ = V
†
d u d̃0 = V

0†
d d0. (3.3)
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Elementary manipulations allow us to arrive at the following identity involv-
ing wfr. constants in the mass diagonal basis and the CKM matrix

ZuL 1

2 K = K0ZdL 1

2 , (3.4)

and, writing K0 = K + δK, we arrive at

δKjk =
1

4

[(

δẐuL − δẐuL†
)

K − K
(

δẐdL − δẐdL†
)]

jk
, (3.5)

where we have changed notation and used Ẑ for the wfr. constants appearing
in the above expression. Indeed, they are not necessarily the same ones that
have to be used to renormalize and guarantee the proper on-shell residue for
the external legs and we anticipate that they will not. The reason is clear:
the above wfr. constants Ẑ are introduced so as to preserve the diagonal
character of the mass matrix and they do not necessarily keep the kinetic
terms diagonal on-shell.

From the above expressions it is also straightforward to derive the follow-
ing Ward identity

(ẐuLẐuL†)
1

2 K = K(ẐdLẐdL†)
1

2 (3.6)

Notice that in order to arrive to (3.5) we have used the fact that both K

and K0 are unitary matrices. It is perfectly possible, though perhaps a bit
strange, to use a renormalized CKM matrix that is not unitary. If this is the
case, the appropriate expression for the counterterm would simply be

δKjk =
1

2

[

δẐuLK − KδẐdL
]

jk
. (3.7)

The previous Ward identity is certainly a necessary condition for the gauge
invariance of the results, but it is not sufficient.

Any renormalization scheme that is manifestly gauge invariant and in
addition mass independent, will obviously fulfill the above Ward identity
automatically. This can be seen explicitly from the calculations presented
in [6, 10] that use minimal subtraction and a mass independent scheme,
respectively. However, the on-shell conditions to be imposed on the external
legs are manifestly different for different quarks, since they have different
masses. It is therefore impossible that the external leg wfr. obey the previous
Ward identity and they cannot be used to define the CKM counterterms.
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4 Renormalization of External Legs

We want to define an on-shell renormalization scheme that guarantees the
correct properties of the fermionic propagator in the p2 → m2

i . The con-
ditions necessary for that purpose were first given by Aoki et. al. in [7].

We renormalize the bare fermion fields as Ψ0 = Z
1

2 Ψ and Ψ̄0 = Ψ̄Z̄
1

2 For
reasons that will become clear along the discussion, we shall allow Z and Z̄

to be independent renormalization constants. Due to radiative corrections
the propagator mixes fermion of different family indices. Namely

iS−1 (p) = Z̄
1

2

(

6 p − m − δm − Σ (p)
)

Z
1

2 , (4.1)

where the bare self-energy Σ is non-diagonal and is given by −iΣ =
∑

1PI.

Within one-loop accuracy we can write Z
1

2 = 1 + 1
2
δZ etc. Introducing the

family indices explicitly we have

iS−1
ij (p) = (6 p − mi) δij − Σ̂ij (p) , (4.2)

where the one-loop renormalized self-energy is given by

Σ̂ij (p) = Σij (p) −
1

2
δZ̄ij (6 p − mj) −

1

2
(6 p − mi) δZij + δmiδij . (4.3)

h The conditions [7] necessary to avoid mixing will be

Σ̂ij (p) u
(s)
j (p) = 0 , (p2 → m2

j) , (incoming particle) (4.4)

v̄
(s)
i (−p) Σ̂ij (p) = 0 , (p2 → m2

i ) , (incoming anti−particle)(4.5)

ū
(s)
i (p) Σ̂ij (p) = 0 , (p2 → m2

i ) , (outgoing particle) (4.6)

Σ̂ij (p) v
(s)
j (−p) = 0 , (p2 → m2

j) , (outgoing anti−particle)(4.7)

where no summation over repeated indices is assumed and i 6= j. These
relations determine the non-diagonal parts of Z and Z̄.

Here it is worth to make one important comment regarding the above
conditions. First of all we note that in the literature the relation

Z̄
1

2 = γ0Z
1

2
†γ0 , (4.8)

is taken for granted. This relation is tacitly assumed in [7] and explicitly
required in [9]. Imposing Eq. (4.8) would guarantee hermiticity of the La-
grangian written in terms of the renormalized physical fields. However, we
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are at this point concerned with external leg renormalization, for which it
is perfectly possible to use a different set of renormalization constants. In
fact, using two sets of renormalization constants is a standard practice in the
on-shell scheme [5]. In case one is worried about the consistency of using a
set of wfr. constants not satisfying (4.8) for the external legs while keeping
a Hermitian Lagrangian, it should be pointed out that there is a complete
equivalence between the set of renormalization constants we shall find out
below and a treatment of the external legs where diagrams with self-energies
(including mass counter terms) are inserted instead of the wfr. constants;
provided that the mass counter term satisfy the on-shell condition. This
gives results identical to ours and different from those obtained using the
wfr. proposed in [9], which do fulfil (4.8).

In any case, self-energies develop absorptive terms and this makes Eq.
(4.8) incompatible with the diagonalizing conditions (4.4)-(4.7). Therefore in
order to circumvent this problem one can give up diagonalization conditions
(4.4)-(4.7) or alternatively the hermiticity condition (4.8). The approach
taken originally in [9] and works thereafter was the former alternative, while
in this work we shall advocate the second one.

The approach of [9] consists in dropping out absorptive terms from con-
ditions (4.4)-(4.7). Two severe problems arise if one follows this approach:
(a) Since only the dispersive part of the self-energies enters into the diago-
nalizing conditions the on-shell propagator remains non-diagonal. (b) The
on-shell scheme based in this prescription leads to gauge parameter depen-
dent physical amplitudes. The reason for this unwanted dependence is the
dropping of absorptive gauge parameter dependent terms in the self-energies
that are necessary to cancel absorptive terms appearing in the vertices.

We shall now present the renormalization constants derived solely from
the on-shell conditions (4.4)-(4.7) and allowing for Z̄

1

2 6= γ0Z
1

2
†γ0. In a rather

obvious notation

δZL
ij =

2

m2
j − m2

i

[

ΣγR
ij

(

m2
j

)

mimj + ΣγL
ij

(

m2
j

)

m2
j + miΣ

L
ij

(

m2
j

)

+ ΣR
ij

(

m2
j

)

mj

]

δZR
ij =

2

m2
j − m2

i

[

ΣγL
ij

(

m2
j

)

mimj + ΣγR
ij

(

m2
j

)

m2
j + miΣ

R
ij

(

m2
j

)

+ ΣL
ij

(

m2
j

)

mj

]

δZ̄L
ij =

2

m2
i − m2

j

[

ΣγR
ij

(

m2
i

)

mimj + ΣγL
ij

(

m2
i

)

m2
i + miΣ

L
ij

(

m2
i

)

+ ΣR
ij

(

m2
i

)

mj

]
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δZ̄R
ij =

2

m2
i − m2

j

[

ΣγL
ij

(

m2
i

)

mimj + ΣγR
ij

(

m2
i

)

m2
i + miΣ

R
ij

(

m2
i

)

+ ΣL
ij

(

m2
i

)

mj

]

(4.9)
It is immediate to check that δZ̄L

ij − δZ
L†
ij 6= 0. This non-vanishing difference

is due to the presence of branch cuts in the self-energies that invalidate the
pseudo-hermiticity relation Σij (p) 6= γ0Σ†

ij (p) γ0. If we, temporally, ignore
those branch cut contributions our results reduces to the ones depicted in
[9] or [8]. In the SM these branch cuts are generically gauge dependent
as a cursory look to the appropriate integrals shows at once. The proper
consideration of the branch cuts is absolutely essential.

Once the off-diagonal wfr. are obtained we focus our attention in the
diagonal sector. Here, even after using the on-shell conditions some freedom
remains. We obtain

δmi = −
1

2
Re

{

miΣ
γL
ii

(

m2
i

)

+ miΣ
γR
ii + ΣL

ii

(

m2
i

)

+ ΣR
ii

(

m2
i

)

}

. (4.10)

This condition defines a mass and a width that agrees at the one-loop level
with the ones given in [13]. Finally,

δZ̄L
ii = ΣγL

ii

(

m2
i

)

− X −
αi

2
+ D ,

δZ̄R
ii = ΣγR

ii

(

m2
i

)

+ X −
αi

2
+ D ,

δZL
ii = ΣγL

ii

(

m2
i

)

+ X +
αi

2
+ D ,

δZR
ii = ΣγR

ii

(

m2
i

)

− X +
αi

2
+ D , (4.11)

X =
1

2

ΣR
ii (m2

i ) − ΣL
ii (m

2
i )

mi

, (4.12)

D = m2
i

(

ΣγL′
ii

(

m2
i

)

+ ΣγR′
ii

(

m2
i

)

)

+ mi

(

ΣL′
ii

(

m2
i

)

+ ΣR′
ii

(

m2
i

)

)

(4.13)

Note that since X = 0 at the one-loop level and choosing αi = 0 we obtain
δZ̄L

ii = δZL
ii and δZ̄R

ii = δZR
ii . However we have the freedom to choose αi 6=

0. This does not affect the mass terms or neutral current couplings, but
changes the charged coupling currents by multiplying the CKM matrix K by
diagonal matrices. These redefinitions do not change the physical observables
provided the αi are pure imaginary numbers. This ambiguity corresponds in
perturbation theory to the well know freedom in phase redefinitions of the
CKM matrix. Except for this last freedom, the on-shell conditions determine
one unique solution, the one presented here, with Z̄

1

2 6= γ0Z
1

2
†γ0.
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5 Gauge Invariance

Let us briefly recapitulate where we stand at this point. In section 3 the
relation (3.5) relating the CKM counterterm to a set of wfr. renormalization
constants that we denoted by Ẑ was discussed. This set of renormalization
constants has to fulfill the Ward identity (3.6). The diagonal character of
the mass matrix is preserved along the renormalization process for any value
of the momenta when these wfr. constants are used.

On the other hand, in the previous section another set of wfr. constants
has been introduced by requiring the diagonalization of the whole kinetic
term at specific values of the momenta (on-shell) as well as the corresponding
unit residue condition.

It is important to realize that both set of wfr. constants do not coincide.
However, the poles are identical in both set of wfr. constants, as they corre-
spond, in fact, to different choices of schemes that have to render the same
set of Green functions finite. In the case of the external leg wfr. we claim
that we have no choice if we are to implement the proper LSZ conditions.
In fact, the prescription in [9] does not achieve the diagonalization of the
absortive parts of the self-energies. On the other hand, for the CKM coun-
terterms one does have a choice; one can use for example minimal subtraction
(or variations thereof), subtraction at a given q2 or whatever other method
yields mass independent renormalization conditions. They will simply give
different values of the renormalized entries of the CKM mixing matrix.

How can be sure that our procedure for the renormalization of the external
legs is indeed correct? As we have seen in section 3, gauge invariance is an
issue when dealing with CKM renormalization. Let us therefore use gauge
invariance as an additional check. We will then discover that the presciption
proposed here is the only one that provides gauge invariant amplitudes

Let us go back to eq. (2.4). We know [14] that the combination δe
e
−

δsW

sW

is gauge parameter independent. All the other vertex functions and
renormalization constants are gauge dependent. We want the amplitude
(2.4) to be exactly gauge independent —not just its modulus— so the gauge
dependence must cancel between all the remaining terms.

To determine the gauge dependence of the different self-energies appear-
ing in the external leg counterterms and the vertex 1PI Green function we
shall appeal to the so-called Nielsen identitie[15, 16]. We urge the interested
reader to check [12] for details. The outcome of the analysis is that three
of the form factors appearing in the vertex (2.4) are by themselves gauge
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independent, namely ∂ξδF
(2)
L = ∂ξδF

(1)
R = ∂ξδF

(2)
R = 0. ξ is the gauge-fixing

parameter. We shall also see that the gauge dependence in the remaining
form factor δF

(1)
L cancels exactly with the one contained in δZW and in δZ

and δZ̄. Indeed the Nielsen identities lead to

∂ξ

(

M
(1)
L δF

(1)
L

)

= −M
(1)
L ∂ξ

(

δZ̄uL
ir Krj + KirδZ

dL
rj + δZWKij

)

(5.1)

where Eq. (2.4) and the gauge independence of the electric charge and Wein-
berg angle has been used in the last equality. Note that Eq. (5.1) states that
the gauge dependence of the on-shell bare one-loop vertex function cancels
out the renormalization counter terms appearing in Eq. (2.4). This is one of
the crucial results and special care should be taken not to ignore any of the
absorptive parts —including those in the wfr. constants. As a consequence

∂ξM1 = −
e

2sW

M
(1)
L ∂ξδKij ,

so the counterterm for Kij must be separately gauge independent, as origi-
nally derived in [10]. If one uses, for instance, the on-shell prescription wfr.
constants to determine the CKM counterterms in eq. (3.5), the latter will be
gauge dependent and so will be the amplitude, which is unacceptable. On
the other hand, minimal subtraction for instance is fine.

The difficulties related to a proper definition of δK were first pointed out
in [10, 15], where it was realized that using the on-shell Z’s of [8] in Eq. (3.5)
led to a gauge dependent K and amplitude. They suggested a modification
of the on-shell scheme based on a subtraction at p2 = 0 for all flavours that
ensured gauge independence. We want to stress that the choice for δK is
not unique and different choices may differ by gauge independent finite parts
[17].

However, this is only half the story. Assuming that a gauge independent
scheme has been used to define the Ẑ and, accordingly, the CKM coun-
terterms δKij, the Nielsen identities ensure the gauge independence of the
amplitude if and only if the set of wfr. constants derived in section 4 are used
for the external legs. If instead of using our prescription for δZ and δZ̄ one
makes use of the wfr. constants of [9] to renormalize the external fermion
legs, it turns out that the gauge cancellation dictated by the Nielsen identi-
ties does not actually take place in the amplitude. The culprit is of course
the neglect of the absorptive parts. Notice, that the vertex contribution has
gauge dependent absorptive parts and they remain in the final result.
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One might think of absorbing these additional terms in the counter term
for δK. This does not quite work. Indeed one can see from explicit calcula-
tions that the ‘left-over’ absorptive parts would lead to a non-unitary CKM
matrix[12].

It turns out that in the SM these gauge dependent absorptive parts, lead-
ing to a gauge dependent amplitude if they are dropped, do actually cancel,
at least at the one-loop level, in the modulus of the S-matrix. However, in
[12] it is shown that gauge independent absorptive parts do survive even in
the modulus of the amplitude for top or anti-top decay (and only in these
cases).
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