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Abstract

Accounting for double-logarithmic contributions to high-energy
(� 100 GeV) e+e− annihilation into a quark or a lepton pair in the
kinematics where the final particles are collinear to the e+e− beams
leads to a sizable difference between the forward and backward scat-
tering amplitudes, i.e. to a forward-backward asymmetry. When the
annihilation is accompanied by emission of n electroweak bosons in
the multi-Regge kinematics, it turns out that the cross sections for
photon and Z production have the identical energy dependence and
asymptotically their ratio depends on the Weinberg angle only (more
explicitly it is equal to tan2n θW ) whereas the energy dependence of
the cross section of the W production is suppressed by factor s−0.4

compared to them.

1 Introduction

The double-logarithmic approximation (DLA) was introduced into the par-
ticle physics by V.V. Sudakov who first found that the most important ra-
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diative corrections to the form factor f(q2) of electron at large q2 are the
double-logarithmic (DL) ones, i.e. ∼ (α ln2(q2/m2))n (n = 1, 2, ..). with m
being a mass scale,. After accounting them to all orders in α, it turns out[1]
that asymptotically

f(q2) ∼ e−(α/4π) ln2(q2/m) (1)

when q2 � m2. The next important step towards studying DL asymptotics
in QED was done in Refs. [2]. After that, calculations in DLA have become
a technology rather than an art. The study of QCD scattering amplitudes
has shown that there is no big technical difference between QED and QCD
for calculating amplitudes of elastic processes (see e.g. Ref. [3]) whereas
inelastic (radiative) QCD -amplitudes are much harder to calculate (con-
cerning the Sudakov logarithms in QCD see e.g. Refs. [4]). The methods
of calculating the DL asymptotics can be applied also to electroweak (EW)
processes provided the total energy is high enough to neglect the masses of
the electroweak bosons. At such huge energies (� 100 GeV), many impor-
tant technical details learnt from QED and QCD can be used for calculating
EW amplitudes[5]. In the present talk I will discuss DL asymptotics for e+e−

annihilation into a quark-anitquark or a lepton-antilepton pair [6] and [7].

2 DL contributions to elastic e+e− -annihilation

into quarks and leptons

The conventional way for considering e+e− -annihilation into → qq̄ consists
of two steps: the first one is the assumption that this process is mediated
by a single virtual photon exchange: e+e− → γ∗ → qq̄; the second step
is calculating QCD radiative corrections. However, electroweak radiative
corrections can also be sizable when this process is considered in some par-
ticular kinematic regions. These are the forward and backward kinematics.
The forward kinematics is defined when the scattering angle1 between the
momenta of the initial electron (positron) and of the final particles with the
negative (positive) electric charges is � 1. The case when this angle is ∼ π
gives the backward kinematics. Both kinematics are of the Regge type and
the effect of accounting for the DL radiative corrections to all orders in the

1Through this paper when we refer to angles, we imply the angles in cmf.
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electroweak couplings can be interpreted as exchanges of Reggeons propa-
gating in the cross channel. This means that the expression for the forward
and backward scattering amplitudes can be represented in the form of the
Sommerfeld-Wotson (SW) integral:

M
(±)
j (s/µ2) =

∫ ı∞

−ı∞

dω

2πı

(

s

µ2

)ω

ξ(±)(ω) F
(±)
j (ω) (2)

where the signs ± refer to the signatures of the amplitudes, the signature
factors ξ(+) ≈ 1, ξ(−) ≈ ıπω/2; F

(±)
j (ω) is called the SW amplitude (the

partial wave); the Mandelstam variable s and the mass scale µ obey
√

s �
µ ≥ 100GeV. The integration contour in Eq. (2) runs to the right of all

singularities of F
(±)
j (ω) . Subscript j enumerates both the flavours of the

produced quarks and the EW isospin state in the cross channel. For example,
for the forward e+

R(p2)e
−

L(p1) annihilation into uL(p′2)ūR(p′1) one gets

M (+)(ρ, η) = a exp

[

−
1

8π2

(

3

2
g2 +

Y 2
e + Y 2

q

4
g′2

)

η2

2

]

×
∫ ı∞

−ı∞

dl

2πı
eλl(ρ−η) Dp−1(l + λη)

Dp(l + λη)
(3)

where g and g′ are the SU(2) and U(1) couplings, Ye (Yq) is the hypercharge
of electron (quark), a = (−3g2 + g′2YeYq)/4, λ = −g′(Ye + Yq)/2, p =
−a/λ2, ρ = ln(s/µ2), η = ln(−t/µ2) and Dp are the Parabolic cylinder
functions. Eq. (3) is obtained for the kinematic region s = (p1 + p2)

2 �
−t = −(p2 − p′1)

2.
The exponent in Eq. (3) is the electroweak Sudakov form factor for this

process. It accumulates the softest radiative DL corrections, with virtualities
of the virtual EW bosons ≤ −t. The harder DL contributions are collected
in the SW integral. The singularities of the integrand in Eq. (3) are the zeros
of Dp. Forward scattering amplitudes for e+e− annihilation into quarks of
other chiralities and flavours are represented by similar expressions. The
only difference is in the values of factors a, p, λ. The same is true for the
backward scattering amplitudes.

If F
(±)
j (ω) are singular when ω = ∆

(±)
jr

, (r = 1, ...), then the asymptotic

dependence of M
(±)
j on s is

M
(±)
j (s/µ2) ∼

∑

r

(s/µ2)∆
(±)
jr (4)
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and ∆
(±)
jr

are the intercepts of the Reggeons. Ref. [6] states that the value
of the intercepts depends also on the flavours and chiralities of the final
quarks. It turns out[6] that all intercepts for the backward amplitudes are
negative whereas a part of intercepts for the forward amplitudes is positive.
Therefore, the backward amplitudes rapidly fall when s increases whereas
the forward amplitudes slowly grow with s. This result can be interpreted as
a forward-backward charge asymmetry. In particular, the largest intercepts
of the forward positive signature amplitudes Mj (we drop the superscript
“+”) are ∆u = 0.11 for e−Le+

R → uLūR and ∆d = 0.08 for e−Le+
R → dLd̄R. The

other intercepts are smaller. The asymmetry factor A is defined in terms of
the forward and backward cross sections dσF,B of detecting the quarks in the
forward (backward) cones with very small opening angles θ < MZ/

√
s :

A = [dσF − dσB]/[dσF + dσB] (5)

where dσF (B) stands for forward (backward) differential cross section. Per-
forming numerical calculations, we arrive at the result plotted in Fig. 1. The
difference between the forward and backward scattering amplitudes leads also
to the fact that the average electric charge of the produced hadrons in the
cone around of the e− -beam (e+ -beam) is negative (positive) and the value
of the average charge grows with energy as shown in Fig. 2. It is possible to
apply the plots of Figs. 1 and 2, to the situation when the produced quarks
are in a wider angular region 1 � θ < MZ/

√
s. To this end one should

replace
√

s in these Figs. by MZ/θ.

3 Inelastic e+e− -annihilation into quarks

When e+e− annihilate into qq̄ and electroweak bosons, with the final particles
produced in the multi-Regge kinematics, there also appear DL electroweak
corrections. The essence of the multi-Regge kinematics is that the longitudi-
nal momenta of the produced particles are much greater than their transverse
momenta. On the other hand, the transverse momenta ki⊥ are assumed to
be much greater than MW,Z so that all emission angles are � 1. With this
assumption, the spontaneous broken SU(2)U(1) symmetry in many respects
can be regarded as restored. In particular, it becomes more convenient to
consider emission of the isoscalar A0 and isovector A1,2,3 gauge fields and
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Figure 1: Asymmetry A for e+e− annihilation into quarks of different flavours
in the “collinear angular region” in DLA.

then to proceed to the γ, W, Z emission, using the standard relations be-
tween these two sets. Also it makes possible to use arguments of Refs. [8]
where the multi-Regge amplitudes for gluon production were calculated. It
turns out[7] that amplitudes for the γ and Z production are governed by
both the isoscalar and isovector Reggeons (with the intercepts 0.11 and 0.08)
propagating in the cross channels, whereas the W production is controlled by
the isovector Reggeons only, with the smaller (−0.08 and −0.27) intercepts.
It means that the cross sections of the photon and the Z production have
identical energy dependence. The only difference between them is due to the
different EW couplings, so that asymptotically (at energies

√
s ≥ 106 Gev)

σnZ(s)/σnγ(s) = tan2n θW (6)

whereas
σnW (s)/σnγ(s) ∼ s−0.4 . (7)

The results of the numerical calculations for these cross sections in the
case of single boson production, covering the energy range from 103 to 107 GeV,
are finally shown in Figs. 3 and 4.
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Figure 2: Average electric charge < Q > of the hadron flow detected inside
a narrow cone θ < M/

√
s in the direction of e+ -beam. Short-dashed curve

corresponds to the case of multiphoton annihilation to u, d -current quarks
with M ≡ µ = 0.01 Gev in QED. Dashed curve 1 corresponds to u, d -
constituent quarks with M ≡ µ = 0.3 GeV also in QED. Curves 2 and
3 account for the all quark flavours produced in e+e− -annihilation: the
curve 2 is calculated in QED while the curve 3 corresponds to all EW -
bosons exchanged in DLA with M = MZ . Curve 2 shows how < Q > would
rise without account of EW interactions. The dashed part of the curve 3
corresponds to the region where subleading corrections to DLA could be
important. The dashed horizontal line shows the asymptotic value of < Q >
as the u -quark contribution is dominating.
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Figure 3: Total energy dependence of W± to (Z, γ) rate in e+e− annihilation.
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Figure 4: Total energy dependence of Z to γ rate in e+e− annihilation. The
dashed line shows the asymptotical value of the ratio: tan2 θW ≈ 0.28 .
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