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G. Muñoz (email:gerardom@csufresno.edu)

D. Singleton (email: dougs@csufresno.edu)
Physics Dept., CSU Fresno, Fresno, CA 93740-8031

J. Dryzek (email: jerzy.dryzek@ifj.edu.pl)

Institute of Nuclear Physics,
PL-31-342 Kraków, ul. Radzikowskiego 152, Poland

October 11, 2002

Abstract

We examine the possible role played by field angular momentum
in highly magnetic white dwarf stars. White dwarfs achieve their
equilibrium from the balancing of the gravitational compression by
the Fermi degeneracy pressure of the electron gas. In field theory
there are examples (e.g. the monopole-charge system) where a strong
magnetic field can transform a boson into a fermion or a fermion into
a boson. Based on these examples we argue that for magnetic white
dwarfs the magnetic field may alter the statistics of some fraction
of the white dwarf’s electrons from fermionic to bosonic. This would
effect the stars structure, giving it a smaller than expected radius, and
a lower than expected temperature. In some extreme cases one could
imagine that this effect could lead to the collapse of the white dwarf
into a neutron star despite being below the Chandreshekar limit.
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1 Introduction

In certain highly magnetic white dwarf stars the combination of the magnetic
field with the Coulombic electric field of the electrons results in a field an-
gular momentum. For certain values of the magnetic field the total angular
momentum of the system – spin of the electron plus field angular momentum
– can take on integer values, giving rise to an effective bosonic system. This
proposed transformation of the electrons into effective bosons, as a result of
the field angular momentum, has consequences for the structure of the white
dwarf: the radius could be smaller than expected, and the temperature could
be lower than expected.

2 Field angular momentum in magnetic white

dwarfs

White dwarfs are “dead” stars which achieve their equilibrium by balancing
the gravitational compression by a Fermi degeneracy pressure of the electrons
[1, 2]. The stability argument for a white dwarf can be framed in terms of
the Fermi energy of the electrons versus their gravitational binding energy.
The Fermi energy for a relativistic electron is approximately

EF ≈

h̄cN1=3

R
(1)

where N is the number of electrons in the object, and R is the radius of the
object. The gravitational energy per fermion is approximately

EG ≈ −

GMmn

R
(2)

where mn ≈ 1.67 × 10−24 g is the nucleon mass, and M ≈ 2Nmn is roughly
the total mass of the star The total energy is then Etot = EF + EG. If the
physical constants in EF and EG are such that Etot > 0 then Etot can be de-
creased by increasing R and a stable situation is eventually reached where the
star is supported by its Fermi degeneracy pressure. If the physical constants
in EF and EG are such that Etot < 0 then Etot decreases without bound by
decreasing R and no equilibrium exists. The boundary between these two
situations occurs when h̄cN 1=3 = GNm2

n which implies a maximum baryon
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number of Nmax ≈ (h̄c/2Gm2
n)3=2

≈ 7.8× 1056 and a maximum total mass of
Mmax ≈ 2Nmaxmn ≈ 1.3M⊙. This simple argument gives an approximation
of the Chandrasekhar mass limit for white dwarfs. Crucial to this argument
(or more rigorous versions) is that the electrons should behave as fermions
in order to give rise to the Fermi degeneracy pressure. In lower dimensional
field theories there are examples, such as the sine-Gordon model in one space
and one time dimension, where bosonic and fermionic degrees of freedom can
be taken as dual or interchangeable [3, 4]. These lower dimensional examples
can be extended to 3 + 1 dimensions [5]. In Abelian and non-Abelian field
theories [6, 7] there are configurations where, through the action of a mag-
netic field, the statistics of the system can be transformed (i.e. the system
can be fermionic even though all the fields involved in its construction are
bosonic). There are also certain condensed matter systems, where fermions
can be converted into effective fermions or effective bosons. The fractional
quantum Hall effect [8] offers one such example, where electrons in 2D sys-
tems in the presence of a large magnetic flux can act as effective fermions
[9, 10] or effective bosons [11, 12] depending on which picture/approach one
uses. Here we look at the possibility that in highly magnetized white dwarfs
a similar transformation may occur for some fraction of the electrons of the
star. Converting some fraction of the electrons of the star into effective
quasi-bosons would mean that they would no longer be involved in giving
rise to the Fermi degeneracy pressure. The N in eq. (1) would be reduced
by the fraction of the electrons which are converted to effective bosons. This
weakening of the Fermi degeneracy pressure would give the magnetic white
dwarf a smaller than expected radius for its mass. In extreme cases, if a
large enough fraction of the electrons were converted into bosons, the mag-
netic white dwarf could collapse into a neutron star despite being below the
Chandrasekhar limit. Such a collapse might occur “gently” – without a su-
pernova. This could offer an explanation for certain pulsar systems which
have planets orbiting them [13]. If the neutron star formed via a supernova
then the original planets of the progenitor star should have been blown out
of the system. Also transforming electrons into quasi-bosons could result in
these electrons Bose condensing, which could speed up the cooling rate of
the white dwarf, so that such magnetic white dwarfs could be cooler than
expected.

We now give a simple picture for how an electron inside a highly magne-
tized white dwarf can be transformed into an effective boson. Our arguments
for this transformation are framed in terms of the field angular momentum of
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the system rather than the additional phase factor that arises in the exchange
of the charge/magnetic flux composites. Various 2D [14] and 3D [15] exam-
ples have found that both approaches lead to an equivalent understanding of
the change in statistics of these composite systems.

The angular momentum carried in the electric and magnetic fields can be
written as [16]

Lem =
1

4πc

∫

r × (E × B)d3r (3)

Now we consider an electron located at the origin in a uniform magnetic field
whose direction is taken to define the z-axis (more details can be found in
[17]). The electric field of the electron located inside the white dwarf will be
screened due to the material of the white dwarf. The screening distance is
denoted by Rsc. The electric potential associated with the screened field of
the electron is of the Yukawa form – φ(r) = e exp(−r=Rsc)

r
. The magnetic and

electric field of this system are given as

B = B0ẑ E = −

e exp(−r/Rsc)

r2

[

1 +
r

Rsc

]

r̂ (4)

where B0 is the magnitude of the magneic field. The field angular momentum
which results from this combination of magnetic and electric fields is

Lem =
2eB0R

2
sc

c
ẑ (5)

The direction of field angular momentum is in the ẑ direction, which is deter-
mined by the direction of the external magnetic field. The B0R

2
sc part of this

expression is proportional to the magnetic flux, Φ, “trapped” by the electron.
For a typical white dwarf, Rsc , is generally small – on the order of 10−10

cm. There are two arguments for considering the electron and the trapped
flux as a composite system with total angular momentum Ltot = Lspin +Lem.
First, both the spin of the electron and the field angular momentum are lo-
calized in a small spatial region: a sphere of radius 10−10 cm. In contrast
for the monopole/charge system the field angular momentum density is not
necessarily well localized around the charge and yet is still taken as being
part of the total angular momentum of the composite system. Second, Lem,
by itself does not satisfy [Li, Lj] = iεijkLk. Thus Lem only makes sense as
an angular momentum in combination with Lspin. This is analogous to the
charge/monopole system where it is only the orbital plus field angular mo-
mentum that gives a proper quantum mechanical angular momentum [18].

4



In order for the composite system to behave as an effective boson we want
Lem to be a half-integer multiple of h̄/2 so that Ltot takes on an integer value.
From eq. (5), and using the screening distance of Rsc ≈ 10−10 cm one can see
that in order for Lem to equal h̄/2 then B0 ≈ 1011 G. (more detailed numbers
can be found in Ref. [17]). Highly magnetic white dwarfs are known to have
surface fields of 108 – 109 G, thus it is not unreasonable to postulate interior
fields of order 1011 G. In fact it is not uncommon to postulate interior fields
as high as 1013 G [19].

There are two physical consequences of turning electrons into effective
bosons in a highly magnetic white dwarfs. First, the radius would be smaller
than expected for a given mass due to the reduction of the Fermi degeneracy
pressure. The extent to which the radius of the white dwarf decreases depends
on the number of electrons which become effective bosons, which in turn
depends on the details of the structure of the magnetic field inside the star.
In Ref. [17] a model was given where the magnitude of the magnetic field
increased linearly from a surface value of 109 G to an interior value of 1013

G. This would give a series of concentric shells where the magnetic field
would take on values that would give Ltot of 0, 1, 2, .... All the electrons
within each of these shells would be transformed into effective bosons which
would significantly decrease the radius of the white dwarf. In certain extreme
cases where enough of the electrons are transformed one could envisions
that the white dwarf would collapse into a neutron star despite being below
the Chandrasekhar limit. Such an extreme collapse scenario might give an
explanation of the planet-pulsar systems [13]. In these systems one has up to
three planets orbiting a pulsar. If this pulsar formed in a supernova collapse
then the initial planets should have been blown out of the system, which
is taken to imply that these planets must have formed after the supernova.
However, if the original star collapsed slowly due to the fermion → boson
transformation, then the current planets might be the original planets of
the star. The second possible consequence is that the cooling rate of these
magnetic white dwarfs could be accelerated, since the quasi-bosonic electrons
could Bose condense. In Ref. [20] a similar idea was advanced about the
increased cooling rate of white dwarfs via Bose condensation of the nuclei of
the star. Here we have an increased cooling rate via the Bose condensation
of the transformed electrons.

It would appear that the above mechanism is not applicable to pure,
ideal neutron stars. Even though the magnetic field strength of a neutron
star can be several orders of magnitude larger than that of a white dwarf, a
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neutron carries no charge, and therefore no field angular momentum would
be generated by placing the neutron in a magnetic field. This assumes that
the neutron is a fundamental, chargeless object. As one goes to smaller
distance/larger energy scales (i.e. as one considers neutron stars with in-
creasing densities) there may be a transition where one needs to describe the
matter, not in terms of neutrons, but in terms of a gas of charged quarks.
At this point one might again consider applying the mechanism discussed in
this paper, but now the magnetic field would be transforming the fermionic
quarks into quasi-bosons. Such a neutron star shoud have a smaller than
expected radius and be cooler than expected for the same reasons as in the
white dwarf case – reduction of the Fermi degeneracy pressure and Bose con-
densation of the bosonic quarks. In this connection we would like to point
to recent observational evidence [22] of neutron stars that exhibit both of
these characteristics: smaller than expected radius and cooler temperature.
The standard explanation of this result is that the neutron star has under-
gone a transition to a strange or quark star. The present transformation
mechanism may also provide an explanation of these results. Recently [21]
the mechanism presented in [17] has been used to explain the stability of
magnetars.

3 Discussion and conclusion

We have presented arguments that some fraction of the electrons in highly
magnetic white dwarf could undergo a transformation from fermions into
effective bosons For this system the ambient magnetic field could combine
with the electric field of the electrons, generating a field angular momentum.
For certain values of the magnetic field the combined system of electron
spin plus field angular momentum would take on integer values. Then as
in the charge/monopole system [6, 7] or certain condensed matter systems,
the composite system of electron plus trapped magnetic flux would behave
as an effective boson. This transformation of electrons into effective bosons
would lead to a reduction in the Fermi degeneracy pressure which supports
the white dwarf, and it would open up the possibility of the transformed
electrons Bose condensing. The reduction of the Fermi pressure could give
the white dwarf a smaller than expected radius, while the Bose condensation
would increase its cooling rate, giving it a colder than expected temperature.
The above mechanism could also be applied to neutron stars at the level of
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the quarks. In this respect it can be pointed out that recently “neutron”
stars have been observed which exhibit these two properties of smaller than
expected radius and cooler temperature.
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