
Fading of chiral strings loops to vortons

E. Babichev, V. Dokuchaev

September 27, 2002

Abstract

The damping of oscillations of chiral string loops due to electro-
magnetic and gravitational radiation is studied. We derive expressions
for energy losses into the gravitational and electromagnetic waves from
the closed superconducting chiral cosmic strings of arbitrary form. For
the case of large current on the string we describe the asymptotic be-
haviour of chiral loops and their fading to the stationary state (vor-
tons). General limits on the gravitational and electromagnetic energy
losses by a near stationary chiral loops are found. For these loops we
estimate the oscillation damping time. The analytical dependence of
string energy with time is found in the case of the chiral ring with
small amplitude radial oscillations.

1 Introduction

We study the gravitational and electromagnetic radiation of energy from su-
perconducting closed cosmic strings with chiral current and their fading into
the stationary state (vortons). Cosmic strings are linear topological defects,
that may have been created during phase transitions in the early Universe
(see e. g. reviews in [1, 2]). Witten [3] has shown that strings could be
superconducting in certain particle physics models. The presence of current
on a string leads to the principal specific feature: the superconducting string
loop may form a stable stationary configuration [4, 5, 6]. Cosmic strings
lose their energy on gravitational and electromagnetic radiation (if string is
superconducting). As a result, the “ordinary” not extremely long cosmic
strings without the current evaporate completely during the cosmological
time. On the contrary the superconducting string loops could survive due
to the presence of conserved “charge” and tend to the stable configuration
which is named the chiral vorton [4].
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While moving cosmic string sweeps out a two-dimensional world-sheet in
the Minkowskian space-time. The four-dimensional coordinates of string are
functions of two world-sheet parameters xµ = xµ(σa), where indexes a take
values 0, 1 and σa are correspondingly the coordinates on a two-dimensional
world-sheet. The convenient gauge choice is such that σ0 is the Minkowskian
time t and σ1 parameterizes the string total energy:

E = µ

∫

dσ. (1)

In this gauge the general solution of the equations of motion of the chiral
string is [7, 8, 9]:

x0 = t, x(t, σ) =
L
4π

[a(ξ) + b(η)] , (2)

where L is the invariant length of the string, a(ξ) and b(η) are arbitrary
vector functions of ξ = (2π/L)(σ − t) and η = (2π/L)(σ + t) obeying the
following conditions:

a′2 = 1, b′2 = k2(η) ≤ 1. (3)

In the case of closed chiral strings (loops) the vector functions a(ξ) and b(η)
form closed loops, called a- and b- loops. The function k(η) in (3) may be
expressed as follows [9]:

k2(η) = 1 − 4F ′2(η)

µ
, (4)

where function F (η) defines in turn the auxiliary scalar field

φ(σ, t) =
L
2π

F (η). (5)

According to (5) the scalar field φ(σ, t) is an arbitrary function of the only
parameter η. The four-dimensional current on the string is expressed through
this scalar field φ(σ, t) in the following way [10]:

jµ(x, t) = q

∫

dσφ′(σ, t)(x′µ − ẋµ)δ(3) (x − x(σ, t)) , (6)

where x′ denotes ∂x/∂σ and ẋ denotes ∂x/∂t. The energy-momentum tensor
of the string in this gauge is

T µν = µ

∫

dσ (ẋµẋν − x′µx′ν) δ(3) (x − x(σ, t)) . (7)
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2 Radiation from chiral loops

For any periodic system the gravitational and electromagnetic energy radia-
tion rates (averaged over the period T ) per solid angle dΩ is given by series

dĖgr

dΩ
=

∞
∑

l=1

dĖgr(ωl)

dΩ
,

dĖem

dΩ
=

∞
∑

n=1

dĖem(ωl)

dΩ
, (8)

where ωl = 2πl/T , n is an arbitrary unit vector and [11, 12]

dĖgr(ωl)

dΩ
=

Gω2
l

π
[τ ∗

pqτpq −
1

2
τ ∗

qqτpp],
dĖem(ωl)

dΩ
=

ω2
l

2π
ι̃∗pι̃p, (9)

where τpq and ιp are correspondingly Fourier-transforms of an energy-momen-
tum tensor and current in the corotating basis (e1, e2, e3) ≡ (n,v,w). Note
that only indexes p, q with values 2 and 3 appear in the equation (9).

Usually the total rates per unit time (averaged over the period) are cal-
culated by summing of losses in different modes. In practical numerical
calculations the values of Ė, Ṗ and L̇ are determined with the accuracy up
to the l of a few hundred. Such calculations may be not correct because of
the slow convergence of the corresponding sums over l as was pointed out by
Allen et al. [13]. The summation over radiation modes for energy, momen-
tum and angular momentum losses were done analytically in Ref. [14]. The
corresponding gravitational and electromagnetic energy radiation rates per
unit solid angle is given

dĖgr

dΩ
=

Gµ2

16π3

∫

d4ξPgr(∆x mod 2π − π)2,

dĖem

dΩ
=

q2µ

32π3

∫

d4ξPem(∆x mod 2π − π)2, (10)

where:

∆x = ξ − ξ′ − (η − η′) + n[a(ξ) − a(ξ′) + b(η) − b(η′)],

Pgr = T ′

pqTpq −
1

2
T ′

qqTpp, Pem = J ′

pJp, (11)

where, in turn,

Tij = IiYj + IjYi, Ji = IiX , (12)

here the functions Ii, Yj and X are given by

Ii =

[

a′ei

1 + na′

]

′

, Yj =

[

b′ej

1 − nb′

]

′

, X =

[

√

1 − |b′|2
1 − nb′

]

′

. (13)
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Figure 1: Total radiated gravitational energy Ėgr in units Gµ2 for the 2-2,
2-3 piecewise and hybrid kinky loops is shown as a function of parameter k.
For 2-2 loop α = π/2, for 2-3 loop β = π/4, for hybrid loop γ = 0.

One can observe from (10) that rates (averaged per oscillation period) of
energy losses into electromagnetic and gravitational waves can be expressed
generally in the following form:

Ėgr = Γgr
E Gµ2, Ėem = Γem

E µq2, (14)

where the coefficients Γgr
E and Γem

E depend only on the loop configuration.
Let us now consider some examples of chiral loops and calculate the gravi-

tational and electromagnetic radiation from them. First example is piece-wise
linear loop:

a=A

{

(ξ − π/2) , ξ ∈ [0, π),
(3π/2 − ξ) , ξ ∈ [π, 2π),

b=kB

{

(η − π/2) , η ∈ [0, π),
(3π/2 − η) , η ∈ [π, 2π),

(15)

Using (10) we calculate numerically the gravitational and electromagnetic
radiation (see Fig.1 and 2).

As the second example we consider the more complicated configuration of
piece-wise linear loops. Let a-loop consist of 2 segments and lie along the z-
axis. One kink of a-loop is positioned at the origin (ξ = 0) and the another
kink (ξ = π/2) has coordinates (0, 0, π/2). The positions of kinks of b-loop are
given by the following coordinates: the first kink at η = 0 is positioned at the
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Figure 2: Total radiated electromagnetic energy Ėem in units q2µ for the 2-2,
2-3 piece-wise and hybrid kinky loop is shown as a function of parameter k.
For 2-2 loop α = π/2, for 2-3 loop α = π/4, for hybrid loop α = 0.

origin; the second kink at η = π/3 has coordinates −(kπ/3)(cos β,
√

3, sin β)
and the third kink at η = 2π/3 has coordinates (kπ/3)(cos β,−

√
3, sin β).

The results for gravitational and electromagnetic radiation are presented on
Figs. 1 and 2.

The third example is the hybrid loop of the following kind:

a = (sin ξ, − cos ξ, 0), b = kB

{

(η − π/2) , 0 ≤ η ≤ π,
(−η + 3π/2) , π ≤ η ≤ 2π.

(16)

In this example the a-loop lies in the (x, y) plane and B=(cos γ; 0; sin γ). For
γ = π/2 the gravitational and electromagnetic radiated energy and angular
momentum are shown on the Figs. 1 and 2.

Let us now consider the case of large currents (almost at the maximum
value). It means that the string loop is close to the stationary vorton state.
First we estimate the upper limits for the gravitational and electromagnetic
radiation. Using the smallness of k from (10) we find [16]:

∣

∣

∣
Ėgr

∣

∣

∣
≤ 32π4b2

3Gµ2,
∣

∣

∣
Ėem

∣

∣

∣
≤ 4

3
π4b2

3q
2µ. (17)

where b3 is a maximum value |b′′′(η)| on the segment η ∈ (0, 2π).
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Let us further assume for simplicity that the current is constant along
the string, k = const. Then from (10) we see that the radiated power can be
rewritten in the following way:

Ėgr = KgrGµ2k2, Ėem = Kemq2µk2, (18)

where Kem and Kgr are numerical factors, depending only on the loop ge-
ometry. We see that radiation power of the near stationary chiral loops is
proportional to k2. The geometrical numerical factors Kgr and Kem in turn
is connected with the corresponding parameters Γgr

E and Γem
E in equation (14)

by relation
Γgr = Kgrk2, Γem = Kemk2. (19)

For the following three examples we calculate the coefficients Kgr and Kem:
(i) the radially oscillating ring, which configuration is given by

a = (cos ξ, − sin ξ, 0), b = k(cos η, − sin η, 0), (20)

(ii) the piece-wise linear loop (15) and (iii) the hybrid loop of the following
configuration:

a = A

{

(ξ − π/2) , 0 ≤ ξ ≤ π,
(−ξ + 3π/2) , π ≤ ξ ≤ 2π,

b = k(sin η, − cos η, 0). (21)

We obtain respectively for the first example Kgr = 4.73 and Kem = 2.28; for
the second example Kgr = 7.63 and Kem = 3; for the third loop Kgr = 7.63
and Kem = 3.

3 Damping of loop oscillations

Let us evaluate now the damping time of small amplitude oscillations of a
near stationary chiral string loops corresponding to the limit k � 1 in (3).
For simplicity we assume that k does not depend on η in the considered limit
(this assumption is held true in the considered above solvable examples).
Then a total loop charge conservation in (6) gives

q
√

µ

2
L
√

1 − k2 = const. (22)

From this equation we find the relation between energy E and parameter k
of the chiral string with small amplitude oscillations:

E ' Ev

(

1 +
k2

2

)

, (23)
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where Ev = Lµ is an energy of the stationary (vorton) chiral loop configu-
ration at k = 0. Comparing (23) with (18) we estimate the damping time of
string oscillations

τ ∼ Ev

2(KgrGµ2 + Kemq2µ)
. (24)

It is convenient to express the damping time (24) through the vorton physical
length:

τ ∼ Lph

KgrGµ + Kemq2
, (25)

where the physical string length Lph is connected with an invariant length
of the string by the relation Lph = L/2 [15]. In the case of the chiral ring
(20) it is naturally to assume that evolving ring saves its form (due to the
symmetry) during the damping of small amplitude oscillations. In this case
therefore we can find precisely the evolution of the radiating string with time.
Only k varies in time if the shape of the string is invariable. Solving together
(18) and (23), we find the law of oscillation damping in the near stationary
chiral ring [16]

k2 ' k2
0e

−t(1/τgr

c +1/τ em
c

), (26)

where k0 = k(t = 0), and the damping times due to gravitational and elec-
tromagnetic radiation correspondingly:

τ gr
c =

Lph

KgrGµ
, τ em

c =
Lph

Kemq2
. (27)

Substituting (26) in (23) we obtain [16]

E ' Ev

[

1 +
k2

0

2
e−t(1/τgr

c +1/τ em
c

)

]

. (28)

An effective number of oscillations during the damping time (oscillator qua-
lity) is

Q =
τ

T
=

2

L

τ grτ em

τ gr + τ em
. (29)

The ratio of damping times due to gravitational and electromagnetic radia-
tion is

τ gr/τ em ∼ 1.4 × 10−4 q2
e

µ6

Kem

Kgr
, (30)

where Gµ/c2 = 10−6µ6 and qe = q/e. If q2
e/µ6 & 1.4 × 10−3, then electro-

magnetic radiation prevails in the chiral loop evolution (it is valid for the
standard values of µ6 ∼ 1 and qe ∼ 1). If on the contrary q2

e/µ6 . 1.4× 10−3

(for example, if a current is neutral and there is no electromagnetic radiation
at all), then pure gravitational radiation determines the evolution.
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4 Astrophysical consequences

Let us estimate a characteristic size of the string Lv with oscillation damping
time (25) equals to the universe lifetime t0 ' 1018 s. In the case of the
gravitational radiation predominance we find

Lgr
v ' GµKgrt0

c
' 102µ6 kpc (31)

for Kgr ∼ 1. So the chiral strings with length L < Lgr
v (i. e. with a size of

typical galactic halo or less) have had enough time to fade into vortons. On
the other hand if the electromagnetic radiation prevails, we have

Lem
v ' q2Kemt0

~
' 70q2

e Mpc (32)

for Kem ∼ 1 and so the electromagnetically radiated chiral loops with the
length shorter than the size of galactic clusters have had transformed now to
vortons.

From the damping time estimation it follows that only sufficiently long
superconducting cosmic strings oscillate up to the present time. On the con-
trary the small scale chiral loops transformed into the stationary vortons
due to the oscillation damping. Namely, the minimal length of presently os-
cillating chiral loop varies from Lgr

v ∼ 102µ6 kpc for gravitational radiation
domination to Lem

v ∼ 70q2
e Mpc for electromagnetic radiation domination

depending on the relations between µ and q. It appears that the oscilla-
tor quality of chiral loops (29) is independent on the loop length and is
determined only by the loop shape through geometric parameters Kgr and
Kem. For characteristic values of Kgr ∼ 10 and Kem ∼ 1 the corresponding
oscillator qualities for the gravitational and electromagnetic radiation are
Qgr ∼ 105/µ6 and Qem ∼ 137/q2

e .
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